HELHomo sapiens (Human)Cancer cell line

Also known as: Human ErythroLeukemia, GM06141B, GM06141, Hel

🤖 AI SummaryBased on 13 publications

Quick Overview

Human erythroleukemia cell line with JAK2 V617F mutation

Detailed Summary

The HEL cell line is a human erythroleukemia cell line derived from a patient with myeloproliferative neoplasm (MPN) without a history of myelodysplastic syndrome (MDS) or MPN. It is characterized by the presence of the JAK2 V617F mutation, which is a gain-of-function mutation in the JAK2 gene. This mutation leads to constitutive activation of JAK2, contributing to uncontrolled cell proliferation. The HEL cell line is widely used in research to study the pathogenesis of MPN and the role of JAK2 mutations in leukemogenesis. It has also been utilized to investigate the effects of JAK2 inhibitors on cell growth and apoptosis. Additionally, the HEL cell line exhibits chromosomal abnormalities, including loss of heterozygosity (LOH) on chromosome 9p, which may be associated with the malignant transformation of the cells.

Research Applications

Study of JAK2 V617F mutation in MPNInvestigation of JAK2 inhibitor efficacyAnalysis of chromosomal abnormalities in leukemogenesis

Key Characteristics

JAK2 V617F mutationLoss of heterozygosity on chromosome 9pErythroleukemia origin
Generated on 6/14/2025

Basic Information

Database IDCVCL_0001
SpeciesHomo sapiens (Human)
Tissue SourcePeripheral blood[UBERON:UBERON_0000178]

Donor Information

Additional Information
  • Originally the patient was suffering from Hodgkin lymphoma
Age30
Age CategoryAdult
SexMale
Racecaucasian

Disease Information

DiseaseAcute erythroid leukemia
LineageMyeloid
SubtypeAcute Myeloid Leukemia
OncoTree CodeAML

DepMap Information

Source TypeDSMZ
Source IDACH-000004_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Met133Lys (c.398T>A)Homozygous-from parent cell line HEL
MutationSimpleJAK2p.Val617Phe (c.1849G>T)Homozygous-from parent cell line UKE-1

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10
D10S1248
13
D12S391
18,21
D13S317
9,11
D16S539
11
D18S51
12,16
D19S433
11,13
D1S1656
17.3
D21S11
29,30.2
D22S1045
15,16
D2S1338
18,19
D2S441
10,15
D3S1358
15
D5S818
11
D7S820
7
D8S1179
13,15
DYS391
10
FGA
21,22,23
Penta D
11,13
Penta E
13,18
TH01
7
TPOX
11
vWA
14,17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

The LL-100 panel: 100 cell lines for blood cancer studies.";

MacLeod R.A.F., Nagel S., Steube K.G., Uphoff C.C., Drexler H.G.

Sci. Rep. 9:8218-8218(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Screening human cell lines for viral infections applying RNA-Seq data analysis.

Uphoff C.C., Pommerenke C., Denkmann S.A., Drexler H.G.

PLoS ONE 14:E0210404-E0210404(2019).

Profiling the B/T cell receptor repertoire of lymphocyte derived cell lines.

Yang H.H., Koeffler H.P.

BMC Cancer 18:940.1-940.13(2018).

Hodgkin lymphoma cell lines: to separate the wheat from the chaff.";

Drexler H.G., Pommerenke C., Eberth S., Nagel S.

Biol. Chem. 399:511-523(2018).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Transcriptomic analysis of the ion channelome of human platelets and megakaryocytic cell lines.

Wright J.R., Amisten S., Goodall A.H., Mahaut-Smith M.P.

Thromb. Haemost. 116:272-284(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms.

Haferlach T., Shirahige K., Miyano S., Ogawa S.

Nat. Genet. 45:1232-1237(2013).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

JAK2 V617F tyrosine kinase mutation in cell lines derived from myeloproliferative disorders.

Quentmeier H., MacLeod R.A.F., Zaborski M., Drexler H.G.

Leukemia 20:471-476(2006).

FLT3 mutations in the activation loop of tyrosine kinase domain are frequently found in infant ALL with MLL rearrangements and pediatric ALL with hyperdiploidy.

Tsuchida M., Sugita K., Ida K., Hayashi Y.

Blood 103:1085-1088(2004).

Corrigendum to: Frequent microsatellite instability and BAX mutations in T cell acute lymphoblastic leukemia cell lines Leukemia Research 24 (2000), 255-262.

Inoue K., Kohno T., Takakura S., Hayashi Y., Mizoguchi H., Yokota J.

Leuk. Res. 25:275-278(2001).

Biological significance of the expression of HIV-related chemokine coreceptors (CCR5 and CXCR4) and their ligands by human hematopoietic cell lines.

Gaulton G.N., Ratajczak M.Z.

Leukemia 14:1821-1832(2000).

Frequent microsatellite instability and BAX mutations in T cell acute lymphoblastic leukemia cell lines.

Inoue K., Kohno T., Takakura S., Hayashi Y., Mizoguchi H., Yokota J.

Leuk. Res. 24:255-262(2000).

Expression of the TCL1 gene at 14q32 in B-cell malignancies but not in adult T-cell leukemia.

Aizawa Y., Ueda R., Seto M.

Jpn. J. Cancer Res. 89:712-718(1998).

Frameshift mutations of the hMSH6 gene in human leukemia cell lines.

Hirai H.

Jpn. J. Cancer Res. 89:33-39(1998).

Screening the p53 status of human cell lines using a yeast functional assay.

Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.

Mol. Carcinog. 19:243-253(1997).

Cell surface c-kit receptors in human leukemia cell lines and pediatric leukemia: selective preservation of c-kit expression on megakaryoblastic cell lines during adaptation to in vitro culture.

Imaizumi M., Endo M., Takano N., Konno T.

Leukemia 10:102-105(1996).

Analysis of c-kit expression of human erythroleukemia cell line, HEL: clonal variation and relationship with erythroid and megakaryocytic phenotype.

Kubota A., Okamura S., Shimoda K., Ikematsu W., Otsuka T., Niho Y.

Leuk. Res. 19:283-290(1995).

HEL cells: a new human erythroleukemia cell line with spontaneous and induced globin expression.

Martin P.J., Papayannopoulou T.

Science 216:1233-1235(1982).

Isoenzyme studies in human leukemia-lymphoma cells lines -- II. Acid phosphatase.

Drexler H.G., Gaedicke G., Minowada J.

Leuk. Res. 9:537-548(1985).

Isoenzyme studies in human leukemia-lymphoma cell lines -- III. Beta-hexosaminidase (E.C. 3.2.1.30).

Drexler H.G., Gaedicke G., Minowada J.

Leuk. Res. 9:549-559(1985).

Isoenzyme studies in human leukemia-lymphoma cell lines -- 1. carboxylic esterase.

Drexler H.G., Gaedicke G., Minowada J.

Leuk. Res. 9:209-229(1985).

Chromosome abnormalities in human tumor cells in culture.";

Biedler J.L.

(In book chapter) Human tumor cells in vitro; Fogh J. (eds.); pp.359-394; Springer; New York; USA (1975).