DaudiHomo sapiens (Human)Cancer cell line

Also known as: DAUDI, NK-10A, NK-10a, NK 10a, NK10a, N, GM03190, GM3190, GM03190A, GM17346, Duadi (Occasionally.)

🤖 AI SummaryBased on 12 publications

Quick Overview

Human B-cell lymphoma cell line for cancer research and drug development.

Detailed Summary

The Daudi cell line is a human B-cell lymphoma cell line derived from a patient with Burkitt lymphoma. It is widely used in research for studying B-cell malignancies, viral infections, and drug screening. Daudi cells are known to harbor the Epstein-Barr virus (EBV), which is associated with several lymphoproliferative disorders. This cell line is valuable for investigating the molecular mechanisms of B-cell transformation and for developing targeted therapies. Its characteristics make it a key model for understanding the role of EBV in oncogenesis and for testing antiviral and anticancer agents.

Research Applications

Cancer researchViral infection studiesDrug developmentB-cell malignancy investigations

Key Characteristics

Epstein-Barr virus (EBV) positiveB-cell lineageLymphoma model
Generated on 6/14/2025

Basic Information

Database IDCVCL_0008
SpeciesHomo sapiens (Human)
Tissue SourcePeripheral blood[UBERON:UBERON_0000178]

Donor Information

Age16
Age CategoryPediatric
SexMale
Raceblack_or_african_american

Disease Information

DiseaseEBV-related Burkitt lymphoma
LineageLymphoid
SubtypeBurkitt Lymphoma
OncoTree CodeBL

DepMap Information

Source TypeATCC
Source IDACH-000786_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
Gene fusionIGHMYC-IGH--PubMed=31160637
MutationSimpleB2Mp.Met1Ile (c.3G>C)Homozygous-from parent cell line Daudi
MutationSimpleCTNNB1p.Ala5_Ala80del (c.14_241del228)Homozygous-from parent cell line LS513
MutationSimpleTP53p.Gly266Glu (c.797G>A)Unspecified-PubMed=21173094

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X,Y
CSF1PO
12
D13S317
11,12
D16S539
10,12
D18S51
16,18
D19S433
12,14
D21S11
34,35
D2S1338
17,24
D3S1358
16,18
D5S818
8,13
D7S820
8,10
D8S1179
14
FGA
21,26
Penta D
10,12
Penta E
7,9
TH01
6,7
TPOX
8,11
vWA
15,17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Cell surface antigens of human ovarian and endometrial carcinoma defined by mouse monoclonal antibodies.

Mattes M.J., Cordon-Cardo C., Lewis J.L. Jr., Old L.J., Lloyd K.O.

Proc. Natl. Acad. Sci. U.S.A. 81:568-572(1984).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

The LL-100 panel: 100 cell lines for blood cancer studies.";

MacLeod R.A.F., Nagel S., Steube K.G., Uphoff C.C., Drexler H.G.

Sci. Rep. 9:8218-8218(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Screening human cell lines for viral infections applying RNA-Seq data analysis.

Uphoff C.C., Pommerenke C., Denkmann S.A., Drexler H.G.

PLoS ONE 14:E0210404-E0210404(2019).

Profiling the B/T cell receptor repertoire of lymphocyte derived cell lines.

Yang H.H., Koeffler H.P.

BMC Cancer 18:940.1-940.13(2018).

Screening for 15 pathogenic viruses in human cell lines registered at the JCRB Cell Bank: characterization of in vitro human cells by viral infection.

Satoh M., Shimizu N., Kohara A.

R. Soc. Open Sci. 5:172472-172472(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

OncoImmunology 3:e954893.1-e954893.12(2014).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

High-throughput RNA sequencing-based virome analysis of 50 lymphoma cell lines from the Cancer Cell Line Encyclopedia project.

O'Grady T., Baddoo M., Fewell C., Renne R., Flemington E.K.

J. Virol. 89:713-729(2015).

Comprehensive cytogenetic and molecular cytogenetic analysis of 44 Burkitt lymphoma cell lines: secondary chromosomal changes characterization, karyotypic evolution, and comparison with primary samples.

Vettorazzi E., Bokemeyer C., Dierlamm J.

Genes Chromosomes Cancer 53:497-515(2014).

Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics.

Waldmann T.A., Rowe M., Mbulaiteye S.M., Rickinson A.B., Staudt L.M.

Nature 490:116-120(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Detection of EBV, HBV, HCV, HIV-1, HTLV-I and -II, and SMRV in human and other primate cell lines.

Uphoff C.C., Denkmann S.A., Steube K.G., Drexler H.G.

J. Biomed. Biotechnol. 2010:904767.1-904767.23(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Expression of the ULBP ligands for NKG2D by B-NHL cells plays an important role in determining their susceptibility to rituximab-induced ADCC.

Mori F., Ding J.-M., Komatsu H., Iida S., Ueda R.

Int. J. Cancer 125:212-221(2009).

Characterization of expression of protein kinase C isozymes in human B-cell lymphoma: relationship between its expression and prognosis.

Kamimura K., Hojo H., Abe M.

Pathol. Int. 54:224-230(2004).

FLT3 mutations in the activation loop of tyrosine kinase domain are frequently found in infant ALL with MLL rearrangements and pediatric ALL with hyperdiploidy.

Tsuchida M., Sugita K., Ida K., Hayashi Y.

Blood 103:1085-1088(2004).

Comparison of gene expression profiles of lymphoma cell lines from transformed follicular lymphoma, Burkitt's lymphoma and de novo diffuse large B-cell lymphoma.

Maesako Y., Uchiyama T., Ohno H.

Cancer Sci. 94:774-781(2003).

Detection of clonal EBV episomes in lymphoproliferations as a diagnostic tool.

van Dongen J.J.M.

Leukemia 16:1572-1573(2002).

The beta2-microglobulin mRNA in human Daudi cells has a mutated initiation codon but is still inducible by interferon.

Revel M.

EMBO J. 2:239-243(1983).

Corrigendum to: Frequent microsatellite instability and BAX mutations in T cell acute lymphoblastic leukemia cell lines Leukemia Research 24 (2000), 255-262.

Inoue K., Kohno T., Takakura S., Hayashi Y., Mizoguchi H., Yokota J.

Leuk. Res. 25:275-278(2001).

Biological significance of the expression of HIV-related chemokine coreceptors (CCR5 and CXCR4) and their ligands by human hematopoietic cell lines.

Gaulton G.N., Ratajczak M.Z.

Leukemia 14:1821-1832(2000).

Frequent microsatellite instability and BAX mutations in T cell acute lymphoblastic leukemia cell lines.

Inoue K., Kohno T., Takakura S., Hayashi Y., Mizoguchi H., Yokota J.

Leuk. Res. 24:255-262(2000).

Bax is frequently compromised in Burkitt's lymphomas with irreversible resistance to Fas-induced apoptosis.

Magrath I.T., Bhatia K.G.

Cancer Res. 59:696-703(1999).

Expression of the TCL1 gene at 14q32 in B-cell malignancies but not in adult T-cell leukemia.

Aizawa Y., Ueda R., Seto M.

Jpn. J. Cancer Res. 89:712-718(1998).

The induction of apoptosis and cell cycle arrest by arsenic trioxide in lymphoid neoplasms.

Takeshita K., Takeshita A., Ohno R.

Leukemia 12:1383-1391(1998).

Telomere analysis by fluorescence in situ hybridization and flow cytometry.

Roos G.

Nucleic Acids Res. 26:3651-3656(1998).

Frameshift mutations of the hMSH6 gene in human leukemia cell lines.

Hirai H.

Jpn. J. Cancer Res. 89:33-39(1998).

p16/INK4a and p15/INK4b gene methylation and absence of p16/INK4a mRNA and protein expression in Burkitt's lymphoma.

Klangby U., Okan I., Magnusson K.P., Wendland M., Lind P., Wiman K.G.

Blood 91:1680-1687(1998).

Role of the p53 tumor suppressor gene in the tumorigenicity of Burkitt's lymphoma cells.

Pike S.E., Gupta G., Magrath I.T., Tosato G.

Cancer Res. 57:2508-2515(1997).

Sensitivity to dexamethasone and absence of bcl-2 protein in Burkitt's lymphoma cell line (Black93) derived from a patient with acute tumor lysis syndrome: comparative study with other BL and non-BL lines.

Nakamura H., Amakawa R., Ohno H.

Leukemia 10:1592-1603(1996).

IL-12 expression in AIDS-related lymphoma B cell lines.";

Trinchieri G.

J. Immunol. 156:1626-1637(1996).

The (2;5)(p23;q35) translocation in cell lines derived from malignant lymphomas: absence of t(2;5) in Hodgkin-analogous cell lines.

Quentmeier H., Drexler H.G.

Leukemia 10:142-149(1996).

Cell surface c-kit receptors in human leukemia cell lines and pediatric leukemia: selective preservation of c-kit expression on megakaryoblastic cell lines during adaptation to in vitro culture.

Imaizumi M., Endo M., Takano N., Konno T.

Leukemia 10:102-105(1996).

Variable IgH chain enhancer activity in Burkitt's lymphomas suggests an additional, direct mechanism of c-myc deregulation.

Jain V.K., Judde J.-G., Max E.E., Magrath I.T.

J. Immunol. 150:5418-5428(1993).

Interferon-resistant Daudi cells are deficient in interferon-alpha-induced ISGF3 alpha activation, but remain sensitive to the interferon-alpha-induced increase in ISGF3 gamma content.

Dron M., Tovey M.G.

J. Interferon Res. 13:377-383(1993).

Beta 2-microglobulin gene mutations: a study of established colorectal cell lines and fresh tumors.

Bicknell D.C., Rowan A.J., Bodmer W.F.

Proc. Natl. Acad. Sci. U.S.A. 91:4751-4755(1994).

B cell IL-7. Human B cell lines constitutively secrete IL-7 and express IL-7 receptors.

Goodwin R.G.

J. Immunol. 152:4749-4757(1994).

Deletions and rearrangement of CDKN2 in lymphoid malignancy.";

Millar J.L., Catovsky D., Dyer M.J.S.

Blood 85:893-901(1995).

Differences in genetic stability between human cell lines from patients with and without lymphoreticular malignancy.

Povey S., Jeremiah S., Arthur E., Steel M., Klein G.

Ann. Hum. Genet. 44:119-133(1980).

Differential expression of the amv gene in human hematopoietic cells.

Aaronson S.A., Wong-Staal F.

Proc. Natl. Acad. Sci. U.S.A. 79:2194-2198(1982).

Distinction of seventy-one cultured human tumor cell lines by polymorphic enzyme analysis.

Wright W.C., Daniels W.P., Fogh J.

J. Natl. Cancer Inst. 66:239-247(1981).

Correlation between immunoglobulin light chain expression and variant translocation in Burkitt's lymphoma.

Lenoir G.M., Preud'homme J.-L., Bernheim A., Berger R.

Nature 298:474-476(1982).

Distinct reactivity of Burkitt's lymphoma cell lines with eight monoclonal antibodies correlated with the ethnic origin.

Lenoir G.M.

J. Natl. Cancer Inst. 73:841-847(1984).

Sensitivity of the Epstein-Barr virus transformed human lymphoid cell lines to interferon.

Adams A., Strander H., Cantell K.

J. Gen. Virol. 28:207-217(1975).

Differences in the ability of human lymphoblastoid lines to exclude bromodeoxyuridine and in their sensitivity to methyl methanesulfonate and to incorporated [3H]thymidine.

Higgins N.P., Strauss B.S.

Cancer Res. 39:312-320(1979).

Human B-cell interleukin-10: B-cell lines derived from patients with acquired immunodeficiency syndrome and Burkitt's lymphoma constitutively secrete large quantities of interleukin-10.

Benjamin D., Knobloch T.J., Dayton M.A.

Blood 80:1289-1298(1992).

p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia.

Newcomb E.W., Magrath I.T., Knowles D.M., Dalla-Favera R.

Proc. Natl. Acad. Sci. U.S.A. 88:5413-5417(1991).

Expression of leukocyte common antigen (CD45) on various human leukemia/lymphoma cell lines.

Nakano A., Harada T., Morikawa S., Kato Y.

Acta Pathol. Jpn. 40:107-115(1990).

Identification of a human transcription unit affected by the variant chromosomal translocations 2;8 and 8;22 of Burkitt lymphoma.

Shtivelman E., Henglein B., Groitl P., Lipp M., Bishop J.M.

Proc. Natl. Acad. Sci. U.S.A. 86:3257-3260(1989).

Isoenzyme studies in human leukemia-lymphoma cell lines -- 1. carboxylic esterase.

Drexler H.G., Gaedicke G., Minowada J.

Leuk. Res. 9:209-229(1985).

The cytogenetics of human B lymphoid malignancy: studies in Burkitt's lymphoma and Epstein-Barr virus-transformed lymphoblastoid cell lines.

Steel C.M., Morten J.E.N., Foster E.

IARC Sci. Publ. 60:265-292(1985).

Expression of B-cell-specific markers in different Burkitt lymphoma subgroups.

Ehlin-Henriksson B., Manneborg-Sandlund A., Klein G.

Int. J. Cancer 39:211-218(1987).

c-yes and bcl-2 genes located on 18q21.3 in a follicular lymphoma cell line carrying a t(14;18) chromosomal translocation.

Uchino H., Toyoshima K.

Int. J. Cancer 39:785-788(1987).

Expression of surface antigens during the cell cycle in different growth phases of American and African Burkitt's lymphoma cell lines.

Sieverts H., Alabaster O., Goldschmidts W., Magrath I.T.

Cancer Res. 46:1182-1188(1986).

Heterogeneity of B-cell growth factor receptor reactivity in healthy donors and in patients with chronic lymphatic leukemia: relationship to B-cell-derived lymphokines.

Benjamin D., Bazar L.S., Wallace B., Jacobson R.J.

Cell. Immunol. 103:394-408(1986).

The t(8;14) chromosome translocation of the Burkitt lymphoma cell line Daudi occurred during immunoglobulin gene rearrangement and involved the heavy chain diversity region.

Haluska F.G., Tsujimoto Y., Croce C.M.

Proc. Natl. Acad. Sci. U.S.A. 84:6835-6839(1987).

Isoenzyme studies in human leukemia-lymphoma cell lines -- III. Beta-hexosaminidase (E.C. 3.2.1.30).

Drexler H.G., Gaedicke G., Minowada J.

Leuk. Res. 9:549-559(1985).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Interferon modulation of c-myc expression in cloned Daudi cells: relationship to the phenotype of interferon resistance.

Dron M., Modjtahedi N., Brison O., Tovey M.G.

Mol. Cell. Biol. 6:1374-1378(1986).

Isoenzyme studies in human leukemia-lymphoma cells lines -- II. Acid phosphatase.

Drexler H.G., Gaedicke G., Minowada J.

Leuk. Res. 9:537-548(1985).

Immunophenotypic classification of 28 Burkitt cell lines with monoclonal antibodies and reagent selection for bone-marrow purging.

Dore J.-F., Lenoir G.M.

IARC Sci. Publ. 60:447-452(1985).

Sensitivity of Epstein-Barr virus (EBV) producer and non-producer human lymphoblastoid cell lines to superinfection with EB-virus.

Klein G., Dombos L., Gothoskar B.

Int. J. Cancer 10:44-57(1972).

Surface IgM-kappa specificity on a Burkitt lymphoma cell in vivo and in derived culture lines.

Clifford P.

Cancer Res. 28:1300-1310(1968).

Characteristics of new cell lines derived from Burkitt lymphomas.";

Klein E.

Cancer 23:64-79(1969).

Incidence of EB virus-containing cells in primary and secondary clones of several Burkitt lymphoma cell lines.

Maurer B.A., Imamura T., Wilbert S.M.

Cancer Res. 30:2870-2875(1970).

Relationship between the sensitivity of EBV-carrying lymphoblastoid lines to superinfection and the inducibility of the resident viral genome.

Klein G., Dombos L.

Int. J. Cancer 11:327-337(1973).

Relation between Epstein-Barr viral and cell membrane immunofluorescence of Burkitt tumor cells. I. Dependence of cell membrane immunofluorescence on presence of EB virus.

Henle G.S., Henle W., Clifford P.

J. Exp. Med. 128:1011-1020(1968).

Synthesis of immunoglobulins by biopsied tissues and cell lines from Burkitt's lymphoma.

Clifford P.

Immunology 22:847-857(1972).

The absence of beta 2-microglobulin in Daudi cells: active gene but inactive messenger RNA.

de Preval C., Mach B.

Immunogenetics 17:133-140(1983).

A matrix approach to human class II histocompatibility antigens: reactions of four monoclonal antibodies with the products of nine haplotypes.

Brodsky F.M.

Immunogenetics 19:179-194(1984).

Distinction between Burkitt lymphoma subgroups by monoclonal antibodies: relationships between antigen expression and type of chromosomal translocation.

Ehlin-Henriksson B., Klein G.

Int. J. Cancer 33:459-463(1984).

Immunoglobulin secretion by cell lines derived from African and American undifferentiated lymphomas of Burkitt's and non-Burkitt's type.

Parsons R.G.

J. Immunol. 129:1336-1342(1982).

Relationship between karyotype of tissue culture lines and tumorigenicity in nude mice.

Gershwin M.E., Lentz D., Owens R.B.

Exp. Cell Biol. 52:361-370(1984).

Effect of somatic mutation within translocated c-myc genes in Burkitt's lymphoma.

Rabbitts T.H., Forster A., Hamlyn P.H., Baer R.

Nature 309:592-597(1984).