RPMI-8226Homo sapiens (Human)Cancer cell line
Also known as: RPMI 8226, RPMI.8226, RPMI8226, RPMI no. 8226, RPMI no 8226, RPMI #8226, 8226, RPMI 8226/S, RPMI-8226S, RPMI8226/S, 8226/S, Roswell Park Memorial Institute 8226, GM02132, GM2132, GM 2132, GM02132C, Simpson, RPMI-8826, RPMI-8266 (Occasionally.)
Quick Overview
Human multiple myeloma cell line used in cancer research.
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_0014 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Peripheral blood[UBERON:UBERON_0000178] |
Donor Information
Age | 61 |
---|---|
Age Category | Adult |
Sex | Male |
Disease Information
Disease | Plasma cell myeloma |
---|---|
Lineage | Lymphoid |
Subtype | Plasma Cell Myeloma |
OncoTree Code | PCM |
DepMap Information
Source Type | ATCC |
---|---|
Source ID | ACH-000817_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
Gene fusion | IGKJ4 | IGKV2-28-IGKJ4 | - | - | from parent cell line RPMI-8226 |
Gene fusion | IGLJ3 | IGLV2-14-IGLJ3 | - | - | from parent cell line RPMI-8226 |
MutationSimple | EGFR | p.Thr751Ile (c.2252C>T) | Heterozygous | - | from parent cell line RPMI-8226 |
MutationSimple | KRAS | p.Gly12Ala (c.35G>C) | Unspecified | - | PubMed=21173094 |
MutationSimple | TP53 | p.Glu285Lys (c.853G>A) | Unspecified | Temperature-sensitive | PubMed=23851445, PubMed=17260012 |
MutationSimple | TRAF3 | p.Lys191Leufs*60 | Unspecified | - | from parent cell line RPMI-8226 |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
Frameshift mutations of the hMSH6 gene in human leukemia cell lines.
Hirai H.
Jpn. J. Cancer Res. 89:33-39(1998).
Pan-cancer proteomic map of 949 human cell lines.";
Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.
Cancer Cell 40:835-849.e8(2022).
Evaluating the efficacy of multiple myeloma cell lines as models for patient tumors via transcriptomic correlation analysis.
Sirota M., Wiita A.P.
Leukemia 34:2754-2765(2020).
Quantitative proteomics of the Cancer Cell Line Encyclopedia.";
Sellers W.R., Gygi S.P.
Cell 180:387-402.e16(2020).
XPO1 is a critical player for bortezomib resistance in multiple myeloma: a quantitative proteomic approach.
Santra M.K., Rapole S.
J. Proteomics 209:103504.1-103504.10(2019).
The LL-100 panel: 100 cell lines for blood cancer studies.";
MacLeod R.A.F., Nagel S., Steube K.G., Uphoff C.C., Drexler H.G.
Sci. Rep. 9:8218-8218(2019).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.
Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.
Nature 568:511-516(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
Profiling the B/T cell receptor repertoire of lymphocyte derived cell lines.
Yang H.H., Koeffler H.P.
BMC Cancer 18:940.1-940.13(2018).
Evaluation of NCI-7 cell line panel as a reference material for clinical proteomics.
Shah P., Whiteley G.R., Zhang H.
J. Proteome Res. 17:2205-2215(2018).
Characterization of human cancer cell lines by reverse-phase protein arrays.
Liang H.
Cancer Cell 31:225-239(2017).
A map of mobile DNA insertions in the NCI-60 human cancer cell panel.
Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.
Mob. DNA 7:20.1-20.11(2016).
A landscape of pharmacogenomic interactions in cancer.";
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
Cell 166:740-754(2016).
Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.
Vandesompele J.
Sci. Data 3:160052-160052(2016).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.
Golub T.R., Root D.E., Hahn W.C.
Sci. Data 1:140035-140035(2014).
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).
A simple flow cytometry-based barcode for routine authentication of multiple myeloma and mantle cell lymphoma cell lines.
Moreau-Aubry A., Amiot M., Pellat-Deceunynck C.
Cytometry A 87:285-288(2015).
A comprehensive transcriptional portrait of human cancer cell lines.
Settleman J., Seshagiri S., Zhang Z.-M.
Nat. Biotechnol. 33:306-312(2015).
High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.
Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.
PLoS ONE 9:E92047-E92047(2014).
The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.
Hirshfield K.M., Oltvai Z.N., Vazquez A.
Cancer Metab. 1:20.1-20.13(2013).
Global proteome analysis of the NCI-60 cell line panel.";
Wilhelm M., Kuster B.
Cell Rep. 4:609-620(2013).
The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.
Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.
Cancer Res. 73:4372-4382(2013).
Karyotypic variability of human myeloma cell lines.";
Turilova V.I., Smirnova T.D.
Tsitologiia 54:621-636(2012).
Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.
Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.
Science 336:1040-1044(2012).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
Identification of cancer cell-line origins using fluorescence image-based phenomic screening.
Yoon C.N., Chang Y.-T.
PLoS ONE 7:E32096-E32096(2012).
Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.
Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.
PLoS ONE 7:E31628-E31628(2012).
Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.
Ambudkar S.V., Gottesman M.M.
Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).
A high-risk signature for patients with multiple myeloma established from the molecular classification of human myeloma cell lines.
Pellat-Deceunynck C.
Haematologica 96:574-582(2011).
A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
Haber D.A.
Cancer Res. 70:2158-2164(2010).
Signatures of mutation and selection in the cancer genome.";
Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
Nature 463:893-898(2010).
DNA fingerprinting of the NCI-60 cell line panel.";
Chanock S.J., Weinstein J.N.
Mol. Cancer Ther. 8:713-724(2009).
Integrative high-resolution microarray analysis of human myeloma cell lines reveals deregulated miRNA expression associated with allelic imbalances and gene expression profiles.
Todoerti K., Ronchetti D., Lambertenghi-Deliliers G., Neri A.
Genes Chromosomes Cancer 48:521-531(2009).
An integrative genomic approach reveals coordinated expression of intronic miR-335, miR-342, and miR-561 with deregulated host genes in multiple myeloma.
Fabris S., Lambertenghi-Deliliers G., Neri A.
BMC Med. Genomics 1:37.1-37.9(2008).
Characterization of MYC translocations in multiple myeloma cell lines.
Dib A., Gabrea A., Glebov O.K., Bergsagel P.L., Kuehl W.M.
J. Natl. Cancer Inst. Monogr. 39:25-31(2008).
Chromosome pulverization in virus-induced heterokaryons of mammalian cells from different species.
Ikeuchi T., Sandberg A.A.
J. Natl. Cancer Inst. 45:951-963(1970).
Analysis of p53 mutation status in human cancer cell lines: a paradigm for cell line cross-contamination.
Berglind H., Pawitan Y., Kato S., Ishioka C., Soussi T.
Cancer Biol. Ther. 7:699-708(2008).
Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma.
Stewart A.K., Carpten J.D., Bergsagel P.L.
Cancer Cell 12:131-144(2007).
Molecular characterization of human multiple myeloma cell lines by integrative genomics: insights into the biology of the disease.
Lambertenghi-Deliliers G., Bertoni F., Neri A.
Genes Chromosomes Cancer 46:226-238(2007).
Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.
Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.
Mol. Cancer Ther. 5:2606-2612(2006).
The phenotype of normal, reactive and malignant plasma cells. Identification of 'many and multiple myelomas' and of new targets for myeloma therapy.
Moreau P., Amiot M., Pellat-Deceunynck C.
Haematologica 91:1234-1240(2006).
HLA class I and II genotype of the NCI-60 cell lines.";
Morse H.C. 3rd, Stroncek D., Marincola F.M.
J. Transl. Med. 3:11.1-11.8(2005).
Overexpression of PDZK1 within the 1q12-q22 amplicon is likely to be associated with drug-resistance phenotype in multiple myeloma.
Taniwaki M., Inazawa J.
Am. J. Pathol. 165:71-81(2004).
Telomerase inhibition and cell growth arrest by G-quadruplex interactive agent in multiple myeloma.
Hideshima T., Goyal R.K., Hurley L.H., Anderson K.C., Munshi N.C.
Mol. Cancer Ther. 2:825-833(2003).
Mutations of the BRAF gene in human cancer.";
Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.
Nature 417:949-954(2002).
Activated fibroblast growth factor receptor 3 is an oncogene that contributes to tumor progression in multiple myeloma.
Kuehl W.M., Bergsagel P.L.
Blood 97:729-736(2001).
Bone morphogenetic protein-4 inhibits proliferation and induces apoptosis of multiple myeloma cells.
Sundan A.
Blood 97:516-522(2001).
Syndecan-1 is targeted to the uropods of polarized myeloma cells where it promotes adhesion and sequesters heparin-binding proteins.
Borset M., Hjertner O., Yaccoby S., Epstein J., Sanderson R.D.
Blood 96:2528-2536(2000).
Malignant hematopoietic cell lines: in vitro models for the study of multiple myeloma and plasma cell leukemia.
Drexler H.G., Matsuo Y.
Leuk. Res. 24:681-703(2000).
Systematic variation in gene expression patterns in human cancer cell lines.
Botstein D., Brown P.O.
Nat. Genet. 24:227-235(2000).
Mcl-1 and Bcl-xL are co-regulated by IL-6 in human myeloma cells.";
Bataille F.-R., Amiot M.
Br. J. Haematol. 107:392-395(1999).
Detection of MUM1/IRF4-IgH fusion in multiple myeloma.";
Shimizu S., Taniwaki M., Ueda R.
Leukemia 13:1812-1816(1999).
Fluorescence in situ hybridization analysis shows the frequent occurrence of 14q32.3 rearrangements with involvement of immunoglobulin switch regions in myeloma cell lines.
Lokhorst H.M., Clevers H.C., Bast B.J.E.G.
Cancer Genet. Cytogenet. 109:99-107(1999).
Multiple myeloma cell lines.";
Jernberg-Wiklund H., Nilsson K.
(In book chapter) Human cell culture. Vol. 3. Cancer cell lines part 3; Masters J.R.W., Palsson B.O. (eds.); pp.81-155; Kluwer Academic Publishers; New York; USA (2000).
Cell lines from humans with hematopoietic malignancies.";
Moore G.E.
(In book chapter) Human tumor cells in vitro; Fogh J. (eds.); pp.299-331; Springer; New York; USA (1975).
Continuous culture of RPMI 8226 human cells.";
Mano T., Taya M., Taniguchi M., Kobayashi T.
J. Ferment. Technol. 65:425-429(1987).
The leukemia-lymphoma cell line factsbook.";
Drexler H.G.
(In book) ISBN 9780122219702; pp.1-733; Academic Press; London; United Kingdom (2001).
Immunoglobulins.";
Matsuoka Y.
(In book chapter) Tissue culture. Methods and applications; Kruse P.F. Jr., Patterson M.K. Jr. (eds.); pp.599-607; Academic Press; New York; USA (1973).
Mutations of the p53 gene in human myeloma cell lines.";
Theillet C., Klein B.
Oncogene 7:1015-1018(1992).
Estimation of interleukin 6 production by reverse transcriptase-polymerase chain reaction in four human myeloma cell lines.
Koishihara Y., Ohsugi Y., Ohno Y., Imura H.
Leuk. Res. 15:1043-1050(1991).
Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.
Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.
J. Natl. Cancer Inst. 83:757-766(1991).
Expression of leukocyte common antigen (CD45) on various human leukemia/lymphoma cell lines.
Nakano A., Harada T., Morikawa S., Kato Y.
Acta Pathol. Jpn. 40:107-115(1990).
Isoenzyme studies in human leukemia-lymphoma cell lines -- 1. carboxylic esterase.
Drexler H.G., Gaedicke G., Minowada J.
Leuk. Res. 9:209-229(1985).
Isoenzyme studies in human leukemia-lymphoma cell lines -- III. Beta-hexosaminidase (E.C. 3.2.1.30).
Drexler H.G., Gaedicke G., Minowada J.
Leuk. Res. 9:549-559(1985).
Isoenzyme studies in human leukemia-lymphoma cells lines -- II. Acid phosphatase.
Drexler H.G., Gaedicke G., Minowada J.
Leuk. Res. 9:537-548(1985).
Phenotypic and functional analysis of B cell lines from patients with multiple myeloma.
Goldstein M., Hoxie J.A., Zembryki D., Matthews D., Levinson A.I.
Blood 66:444-446(1985).
Synthesis and secretion of immunoglobulins by established cell lines of human hematopoietic origin.
Matsuoka Y., Takahashi M., Yagi Y., Moore G.E., Pressman D.P.
J. Immunol. 101:1111-1120(1968).
The presence of the Epstein-Barr viral genome in human lymphoblastoid B-cell lines and its absence in a myeloma cell line.
Minowada J., Nonoyama M., Moore G.E., Rauch A.M., Pagano J.S.
Cancer Res. 34:1898-1903(1974).
Cell line derived from patient with myeloma.";
Moore G.E., Kitamura H.
N. Y. State J. Med. 68:2054-2060(1968).
Production of free light chains of immunoglobulin by a hematopoietic cell line derived from a patient with multiple myeloma.
Matsuoka Y., Moore G.E., Yagi Y., Pressman D.P.
Proc. Soc. Exp. Biol. Med. 125:1246-1250(1967).
Determination of the optimal human cell lines for development of human hybridomas.
Foon K.A.
J. Immunol. 131:1201-1204(1983).
Promiscuous translocations into immunoglobulin heavy chain switch regions in multiple myeloma.
Kuehl W.M.
Proc. Natl. Acad. Sci. U.S.A. 93:13931-13936(1996).