U-251MGHomo sapiens (Human)Cancer cell line
Also known as: U-251 MG, U-251-MG, U-251_MG, U251-MG, U251MG, U-251, U251, U251n, U251N, 251 MG, 251MG, 251 MG(6)
Quick Overview
U-251MG is a human glioblastoma cell line used in cancer research for studying tumor biology and drug development.
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_0021 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Brain, parietal lobe[UBERON:UBERON_0001872] |
Donor Information
Age | 75 |
---|---|
Age Category | Adult |
Sex | Male |
Disease Information
Disease | Astrocytoma |
---|---|
Lineage | CNS/Brain |
Subtype | Astrocytoma |
OncoTree Code | ASTR |
DepMap Information
Source Type | HSRRB |
---|---|
Source ID | ACH-000232_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
MutationNone reported | IDH1 | - | - | - | PubMed=19435942 |
MutationSimple | PTEN | p.Glu242Valfs*15 (c.723_724dupTG) | Unspecified | - | from parent cell line U-251MG |
MutationSimple | TERT | c.1-124C>T (c.228C>T) (C228T) | Unspecified | In promoter | from parent cell line Hep-G2 |
MutationSimple | TP53 | p.Arg273His (c.818G>A) | Homozygous | - | Unknown, PubMed=16264262 |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
p53-defective tumors with a functional apoptosome-mediated pathway: a new therapeutic target.
Tomoda H., Yamori T., Tsuruo T.
J. Natl. Cancer Inst. 97:765-777(2005).
Pan-cancer proteomic map of 949 human cell lines.";
Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.
Cancer Cell 40:835-849.e8(2022).
RNA sequencing data of different grade astrocytoma cell lines.";
Silva W.A., Valente V.
Data Brief 34:106643.1-106643.13(2021).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.
Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.
Nature 568:511-516(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
Generation of a PAX6 knockout glioblastoma cell line with changes in cell cycle distribution and sensitivity to oxidative stress.
Hegge B., Sjottem E., Mikkola I.
BMC Cancer 18:496.1-496.19(2018).
Characterization of human cancer cell lines by reverse-phase protein arrays.
Liang H.
Cancer Cell 31:225-239(2017).
A map of mobile DNA insertions in the NCI-60 human cancer cell panel.
Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.
Mob. DNA 7:20.1-20.11(2016).
Origin of the U87MG glioma cell line: good news and bad news.";
Allen M., Bjerke M., Edlund H., Nelander S., Westermark B.
Sci. Transl. Med. 8:354re3.1-354re3.4(2016).
A landscape of pharmacogenomic interactions in cancer.";
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
Cell 166:740-754(2016).
Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.
Vandesompele J.
Sci. Data 3:160052-160052(2016).
Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.
Golub T.R., Root D.E., Hahn W.C.
Sci. Data 1:140035-140035(2014).
A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
OncoImmunology 3:e954893.1-e954893.12(2014).
A mass spectrometric-derived cell surface protein atlas.";
Aebersold R., Boheler K.R., Zandstra P.W., Wollscheid B.
PLoS ONE 10:E0121314-E0121314(2015).
U-251 revisited: genetic drift and phenotypic consequences of long-term cultures of glioblastoma cells.
Chekenya Enger M., Bjerkvig R.
Cancer Med. 3:812-824(2014).
High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.
Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.
PLoS ONE 9:E92047-E92047(2014).
The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.
Hirshfield K.M., Oltvai Z.N., Vazquez A.
Cancer Metab. 1:20.1-20.13(2013).
Global proteome analysis of the NCI-60 cell line panel.";
Wilhelm M., Kuster B.
Cell Rep. 4:609-620(2013).
The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.
Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.
Cancer Res. 73:4372-4382(2013).
Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.
Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.
Science 336:1040-1044(2012).
DNA fingerprinting of glioma cell lines and considerations on similarity measurements.
Hamou M.-F., Delorenzi M., Hegi M.E.
Neuro-oncol. 14:701-711(2012).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
Identification of cancer cell-line origins using fluorescence image-based phenomic screening.
Yoon C.N., Chang Y.-T.
PLoS ONE 7:E32096-E32096(2012).
Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.
Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.
PLoS ONE 7:E31628-E31628(2012).
JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs.
Kong D.-X., Yamori T.
Bioorg. Med. Chem. 20:1947-1951(2012).
Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.
Ambudkar S.V., Gottesman M.M.
Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).
Effect of aberrant p53 function on temozolomide sensitivity of glioma cell lines and brain tumor initiating cells from glioblastoma.
Cairncross J.G.
J. Neurooncol. 102:1-7(2011).
A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
Haber D.A.
Cancer Res. 70:2158-2164(2010).
IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas.
Jones D.T.W., Collins V.P.
Neuro-oncol. 11:341-347(2009).
DNA fingerprinting of the NCI-60 cell line panel.";
Chanock S.J., Weinstein J.N.
Mol. Cancer Ther. 8:713-724(2009).
Mechanisms of resistance of human glioma cells to Apo2 ligand/TNF-related apoptosis-inducing ligand.
Rieger J., Frank B., Weller M., Wick W.
Cell. Physiol. Biochem. 20:23-34(2007).
Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.
Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.
Mol. Cancer Ther. 5:2606-2612(2006).
Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines.
Fine H.A.
Cancer Cell 9:391-403(2006).
GL15 and U251 glioblastoma-derived human cell lines are peculiarly susceptible to induction of mitotic death by very low concentrations of okadaic acid.
Gorello P., Gianfranceschi G.L.
Oncol. Rep. 15:463-470(2006).
Overexpressed Skp2 within 5p amplification detected by array-based comparative genomic hybridization is associated with poor prognosis of glioblastomas.
Aoyagi M., Ohno K., Imoto I., Inazawa J.
Cancer Sci. 96:676-683(2005).
Brain tumors.";
Ali-Osman F.
(In book chapter) Human cell culture. Vol. 2. Cancer cell lines part 2; Masters J.R.W., Palsson B.O. (eds.); pp.167-184; Kluwer Academic Publishers; New York; USA (1999).
Neoplastic human glia cells in culture.";
Ponten J.
(In book chapter) Human tumor cells in vitro; Fogh J. (eds.); pp.175-206; Springer; New York; USA (1975).
Human glioma cell lines.";
Nister M., Westermark B.
(In book chapter) Atlas of human tumor cell lines; Hay R.J., Park J.-G., Gazdar A.F. (eds.); pp.17-42; Academic Press; New York; USA (1994).
Tissue typing of cells in culture. III. HLA antigens of established human cell lines. Attempts at typing by the mixed hemadsorption technique.
Espmark J.A., Ahlqvist-Roth L., Sarne L., Persson A.
Tissue Antigens 11:279-286(1978).
Human brain tumour cell strains with deficient host-cell reactivation of N-methyl-N'-nitro-N-nitrosoguanidine-damaged adenovirus 5.
Day R.S. 3rd, Ziolkowski C.H.J.
Nature 279:797-799(1979).
Banding patterns in human glioma cell lines.";
Mark J., Westermark B., Ponten J., Hugosson R.
Hereditas 87:243-260(1977).
Absence of HeLa cell contamination in 169 cell lines derived from human tumors.
Fogh J., Wright W.C., Loveless J.D.
J. Natl. Cancer Inst. 58:209-214(1977).
Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.
Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.
J. Natl. Cancer Inst. 83:757-766(1991).
Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.
Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.
Cancer Res. 48:589-601(1988).
DNA content and chromosomes in permanent cultured cell lines derived from malignant human gliomas.
Bigner S.H., Bjerkvig R., Laerum O.D., Muhlbaier L.H., Bigner D.D.
Anal. Quant. Cytol. Histol. 9:435-444(1987).
The deficient density-dependent growth control of human malignant glioma cells and virus-transformed glia-like cells in culture.
Westermark B.
Int. J. Cancer 12:438-451(1973).
Tumor-specific membrane antigens in established cell lines from gliomas.
Wahlstrom T., Linder E., Saksela E., Westermark B.
Cancer 34:274-279(1974).
Heterogeneity of genotypic and phenotypic characteristics of fifteen permanent cell lines derived from human gliomas.
Ruoslahti E., Herschman H.R., Eng L.F., Wikstrand C.J.
J. Neuropathol. Exp. Neurol. 40:201-229(1981).
Cell surface antigens of human ovarian and endometrial carcinoma defined by mouse monoclonal antibodies.
Mattes M.J., Cordon-Cardo C., Lewis J.L. Jr., Old L.J., Lloyd K.O.
Proc. Natl. Acad. Sci. U.S.A. 81:568-572(1984).
Variant CD44 adhesion molecules are expressed in human brain metastases but not in glioblastomas.
Diserens A.-C., Van Meir E.G.
Cancer Res. 53:5345-5349(1993).
Cross-contamination of cell lines as revealed by DNA fingerprinting in the IFO animal cell bank.
Satoh M., Takeuchi M.
Res. Commun. Inst. Ferment. 16:18-23(1993).
Analysis of the functional role of chromosome 10 loss in human glioblastomas.
Steck P.A.
Cancer Res. 53:5043-5050(1993).
A comparative study of glioma cell lines for p16, p15, p53 and p21 gene alterations.
Washiyama K., Kumanishi T.
Jpn. J. Cancer Res. 87:900-907(1996).
Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers.
Frye C., Hu R., Swedlund B., Teng D.H.-F., Tavtigian S.V.
Nat. Genet. 15:356-362(1997).
Functional expression of bombesin receptor in most adult and pediatric human glioblastoma cell lines; role in mitogenesis and in stimulating the mitogen-activated protein kinase pathway.
Sharif T.R., Luo W., Sharif M.
Mol. Cell. Endocrinol. 130:119-130(1997).
Characterization of p53 and p21 functional interactions in glioma cells en route to apoptosis.
Levin V.A., Yung W.-K.A.
J. Natl. Cancer Inst. 89:1036-1044(1997).
Monitoring adenoviral p53 transduction efficiency by yeast functional assay.
Roth J.A.
Gene Ther. 5:339-344(1998).
Predicting chemoresistance in human malignant glioma cells: the role of molecular genetic analyses.
Krajewski S., Reed J.C., von Deimling A., Dichgans J.
Int. J. Cancer 79:640-644(1998).
Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines.
Van Meir E.G.
Brain Pathol. 9:469-479(1999).
Rare-type mutations of MMAC1 tumor suppressor gene in human glioma cell lines and their tumors of origin.
Washiyama K., Kumanishi T.
Jpn. J. Cancer Res. 90:934-941(1999).
Mutational profile of the PTEN gene in primary human astrocytic tumors and cultivated xenografts.
Collins V.P.
J. Neuropathol. Exp. Neurol. 58:1170-1183(1999).
Systematic variation in gene expression patterns in human cancer cell lines.
Botstein D., Brown P.O.
Nat. Genet. 24:227-235(2000).
CP-31398, a novel p53-stabilizing agent, induces p53-dependent and p53-independent glioma cell death.
Wischhusen J., Naumann U., Ohgaki H., Rastinejad F., Weller M.
Oncogene 22:8233-8245(2003).
P-glycoprotein and multidrug resistance-associated protein mediate specific patterns of multidrug resistance in malignant glioma cell lines, but not in primary glioma cells.
Bahr O., Rieger J., Duffner F., Meyermann R., Weller M., Wick W.
Brain Pathol. 13:482-494(2003).