Caco-2Homo sapiens (Human)Cancer cell line

Also known as: CaCo-2, CACO-2, Caco 2, CACO 2, CACO2, CaCo2, CaCO2, Caco2, Caco-2/ATCC, Caco-II

🤖 AI SummaryBased on 14 publications

Quick Overview

Caco-2 is a human colon adenocarcinoma cell line used for intestinal research.

Detailed Summary

Caco-2 is a human colon adenocarcinoma cell line derived from a colorectal tumor. It is widely used as an in vitro model for studying the intestinal epithelium due to its ability to differentiate into enterocyte-like cells with a brush border. The cell line is utilized in research on drug absorption, toxicity, and transport mechanisms. Caco-2 cells have been employed in studies related to cancer biology, including investigations into molecular pathways, drug resistance, and genetic alterations. The cell line has also been used to study the effects of copper and other metals on cellular toxicity and resistance. Additionally, Caco-2 has been used in the development of models for studying the intestinal barrier function and its role in disease mechanisms.

Research Applications

Intestinal epithelium modelingDrug absorption and transport studiesToxicity testingCancer biology researchMetal toxicity and resistance studiesIntestinal barrier function analysis

Key Characteristics

Differentiates into enterocyte-like cellsExpresses brush border enzymesUsed for permeability studiesRelevant for drug development
Generated on 6/14/2025

Basic Information

Database IDCVCL_0025
SpeciesHomo sapiens (Human)
Tissue SourceColon[UBERON:UBERON_0001155]

Donor Information

Age72
Age CategoryAdult
SexMale
Racecaucasian

Disease Information

DiseaseColon adenocarcinoma
LineageBowel
SubtypeColon Adenocarcinoma
OncoTree CodeCOAD

DepMap Information

Source TypeATCC
Source IDACH-000003_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleAPCp.Gln1367Ter (c.4099C>T)Homozygous-from parent cell line Caco-2
MutationSimpleCTNNB1p.Gly245Ala (c.734G>C)Heterozygous-from parent cell line Caco-2
MutationSimpleSMAD4p.Asp351His (c.1051G>C)Homozygous-from parent cell line Caco-2
MutationSimpleTP53p.Glu204Ter (c.610G>T)Unspecified-PubMed=12377411

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
11
D10S1248
13,15
D12S391
17,23
D13S317
11,13,14
D16S539
12,13
D18S51
12
D19S433
15
D1S1656
15,16
D21S11
30
D22S1045
15,16
D2S1338
17,25
D3S1358
14,17
D5S818
12,13
D7S820
11,12
D8S1179
12
FGA
19
Penta D
9
Penta E
7
SE33
21
TH01
6
TPOX
9,11
vWA
16,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Identification of cell lines CL-14, CL-40 and CAL-51 as suitable models for SARS-CoV-2 infection studies.

Safranko Z.M., Kurolt I.-C., Markotic A., Cicin-Sain L., Steenpass L.

PLoS ONE 16:E0255622-E0255622(2021).

Culture of SARS-CoV-2 in a panel of laboratory cell lines, permissivity, and differences in growth profile.

Wurtz N., Penant G., Jardot P., Duclos N., La Scola B.

Eur. J. Clin. Microbiol. Infect. Dis. 40:477-484(2021).

Characterisation and proteomic profiling of continuously exposed Cu-resistant variants of the Caco-2 cell line.

Clynes M., O'Sullivan F., Horgan K., Murphy R.

Toxicol. In Vitro 65:104773.1-104773.14(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Caco-2 cell line.";

Lea T.

(In book chapter) The impact of food bioactives on health. In vitro and ex vivo models; Verhoeckx K., Cotter P., Lopez-Exposito I., Kleiveland C., Lea T., Mackie A., Requena T., Swiatecka D., Wichers H. (eds.); pp.103-111; Springer; Cham; Switzerland (2015).

Pharmacoproteomic characterisation of human colon and rectal cancer.

Weichert W., Knapp S., Feller S.M., Kuster B.

Mol. Syst. Biol. 13:951-951(2017).

Multi-omics of 34 colorectal cancer cell lines -- a resource for biomedical studies.

Myklebost O., Skotheim R.I., Sveen A., Lothe R.A.

Mol. Cancer 16:116.1-116.16(2017).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

The proteome of filter-grown Caco-2 cells with a focus on proteins involved in drug disposition.

Olander M., Wisniewski J.R., Matsson P., Lundquist P., Artursson P.

J. Pharm. Sci. 105:817-827(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

N-glycosylation profiling of colorectal cancer cell lines reveals association of fucosylation with differentiation and caudal type homebox 1 (CDX1)/villin mRNA expression.

Tollenaar R.A.E.M., Rombouts Y., Wuhrer M.

Mol. Cell. Proteomics 15:124-140(2016).

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

OncoImmunology 3:e954893.1-e954893.12(2014).

Highly expressed genes in rapidly proliferating tumor cells as new targets for colorectal cancer treatment.

Sanchez A., Schwartz S. Jr., Bilic J., Mariadason J.M., Arango D.

Clin. Cancer Res. 21:3695-3704(2015).

The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets.

Linnebacher M., Cordero F., Di Nicolantonio F., Bardelli A.

Nat. Commun. 6:7002.1-7002.10(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

Feasibility of label-free phosphoproteomics and application to base-line signaling of colorectal cancer cell lines.

Pham T.V., Ishihama Y., Verheul H.M.W., Jimenez C.R.

J. Proteomics 127:247-258(2015).

One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.

Fogh J., Fogh J.M., Orfeo T.

J. Natl. Cancer Inst. 59:221-226(1977).

Absence of HeLa cell contamination in 169 cell lines derived from human tumors.

Fogh J., Wright W.C., Loveless J.D.

J. Natl. Cancer Inst. 58:209-214(1977).

Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability.

Hidalgo I.J., Raub T.J., Borchardt R.T.

Gastroenterology 96:736-749(1989).

Epithelial polarity, villin expression, and enterocytic differentiation of cultured human colon carcinoma cells: a survey of twenty cell lines.

Chantret I., Barbat A., Dussaulx E., Brattain M.G., Zweibaum A.

Cancer Res. 48:1936-1942(1988).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Distinction of seventy-one cultured human tumor cell lines by polymorphic enzyme analysis.

Wright W.C., Daniels W.P., Fogh J.

J. Natl. Cancer Inst. 66:239-247(1981).

Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins.

Rousset M., Zweibaum A., Fogh J.

Cancer Res. 41:1165-1170(1981).

Epithelial properties of human intestinal Caco-2 cells cultured in a serum-free medium.

Hashimoto K., Shimizu M.

Cytotechnology 13:175-184(1993).

Neoplastic progression of human and rat intestinal cell lines after transfer of the ras and polyoma middle T oncogenes.

Gespach C.

Gastroenterology 105:1776-1789(1993).

Human Caco-2 cells transfected with c-Ha-Ras as a model for endocrine differentiation in the large intestine.

van der Linden E.P.M., Pijls M.M.J., ten Kate J., Bosman F.T.

Differentiation 53:51-60(1993).

Beta-catenin mutations in cell lines established from human colorectal cancers.

Ilyas M., Tomlinson I.P.M., Rowan A.J., Pignatelli M., Bodmer W.F.

Proc. Natl. Acad. Sci. U.S.A. 94:10330-10334(1997).

Enterocytic differentiation of the human Caco-2 cell line correlates with alterations in integrin signaling.

Levy P., Robin H., Kornprobst M., Capeau J., Cherqui G.

J. Cell. Physiol. 177:618-627(1998).

Centrosome amplification and instability occurs exclusively in aneuploid, but not in diploid colorectal cancer cell lines, and correlates with numerical chromosomal aberrations.

Neumann T., Jauho A., Auer G., Ried T.

Genes Chromosomes Cancer 27:183-190(2000).

APC mutations in sporadic colorectal tumors: a mutational 'hotspot' and interdependence of the 'two hits'.

Papadopoulou A., Bicknell D.C., Bodmer W.F., Tomlinson I.P.M.

Proc. Natl. Acad. Sci. U.S.A. 97:3352-3357(2000).

Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures.

Wolf E., Gabius H.-J.

J. Cancer Res. Clin. Oncol. 127:375-386(2001).

Short tandem repeat profiling provides an international reference standard for human cell lines.

Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.

Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001).

Immunocytochemical analysis of cell lines derived from solid tumors.

Quentmeier H., Osborn M., Reinhardt J., Zaborski M., Drexler H.G.

J. Histochem. Cytochem. 49:1369-1378(2001).

Spectral karyotype analysis of colon cancer cell lines of the tumor suppressor and mutator pathway.

Koehrle J., Al-Taie O.

Cytogenet. Genome Res. 98:22-28(2002).

Permeability characteristics of parental and clonal human intestinal Caco-2 cell lines differentiated in serum-supplemented and serum-free media.

Ranaldi G., Consalvo R., Sambuy Y., Scarino M.L.

Toxicol. In Vitro 17:761-767(2003).

Infection of cultured intestinal epithelial cells with severe acute respiratory syndrome coronavirus.

Hofmann W.-K., Bauer G., Michaelis M., Rabenau H.F., Doerr H.-W.

Cell. Mol. Life Sci. 61:2100-2112(2004).

Exogenous ACE2 expression allows refractory cell lines to support severe acute respiratory syndrome coronavirus replication.

Peters C.J.

J. Virol. 79:3846-3850(2005).

The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics.

Zucco F.

Cell Biol. Toxicol. 21:1-26(2005).

Analysis of p53 mutations and their expression in 56 colorectal cancer cell lines.

Liu Y., Bodmer W.F.

Proc. Natl. Acad. Sci. U.S.A. 103:976-981(2006).

Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues.

Garcia-Foncillas J.

Mol. Cancer 5:29.1-29.10(2006).

Cell growth, global phosphotyrosine elevation, and c-Met phosphorylation through Src family kinases in colorectal cancer cells.

Emaduddin M., Bicknell D.C., Bodmer W.F., Feller S.M.

Proc. Natl. Acad. Sci. U.S.A. 105:2358-2362(2008).

Genomic and biological characterization of exon 4 KRAS mutations in human cancer.

Lash A., Ladanyi M., Saltz L.B., Heguy A., Paty P.B., Solit D.B.

Cancer Res. 70:5901-5911(2010).

5-fluorouracil response in a large panel of colorectal cancer cell lines is associated with mismatch repair deficiency.

Bracht K., Nicholls A.M., Liu Y., Bodmer W.F.

Br. J. Cancer 103:340-346(2010).

Human embryonic stem cells and metastatic colorectal cancer cells shared the common endogenous human microRNA-26b.

Peng J.-Y., Chen H.-Q., Zhou Y.-K., Liu W.-J., Qin H.-L.

J. Cell. Mol. Med. 15:1941-1954(2011).

Hidalgo, I.J., Raub, T.J., and Borchardt, R.T.: Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability, Gastroenterology, 96, 736-749, 1989 -- the backstory.

Borchardt R.T.

AAPS J. 13:323-327(2011).

Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines.

Orphanides G., French T., Wessels L.F.A.

BMC Med. Genomics 5:66.1-66.15(2012).

Identification of a microRNA expression signature for chemoradiosensitivity of colorectal cancer cells, involving miRNAs-320a, -224, -132 and let7g.

Grade M., Gaedcke J.

Radiother. Oncol. 108:451-457(2013).

Epigenetic and genetic features of 24 colon cancer cell lines.";

Hektoen M., Lind G.E., Lothe R.A.

Oncogenesis 2:e71.1-e71.8(2013).

Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer.

Mariadason J.M., Sieber O.M.

Cancer Res. 74:3238-3247(2014).