Caco-2Homo sapiens (Human)Cancer cell line
Also known as: CaCo-2, CACO-2, Caco 2, CACO 2, CACO2, CaCo2, CaCO2, Caco2, Caco-2/ATCC, Caco-II
Quick Overview
Caco-2 is a human colon adenocarcinoma cell line used for intestinal research.
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_0025 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Colon[UBERON:UBERON_0001155] |
Donor Information
Age | 72 |
---|---|
Age Category | Adult |
Sex | Male |
Race | caucasian |
Disease Information
Disease | Colon adenocarcinoma |
---|---|
Lineage | Bowel |
Subtype | Colon Adenocarcinoma |
OncoTree Code | COAD |
DepMap Information
Source Type | ATCC |
---|---|
Source ID | ACH-000003_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
MutationSimple | APC | p.Gln1367Ter (c.4099C>T) | Homozygous | - | from parent cell line Caco-2 |
MutationSimple | CTNNB1 | p.Gly245Ala (c.734G>C) | Heterozygous | - | from parent cell line Caco-2 |
MutationSimple | SMAD4 | p.Asp351His (c.1051G>C) | Homozygous | - | from parent cell line Caco-2 |
MutationSimple | TP53 | p.Glu204Ter (c.610G>T) | Unspecified | - | PubMed=12377411 |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
A comprehensive transcriptional portrait of human cancer cell lines.
Settleman J., Seshagiri S., Zhang Z.-M.
Nat. Biotechnol. 33:306-312(2015).
Identification of cell lines CL-14, CL-40 and CAL-51 as suitable models for SARS-CoV-2 infection studies.
Safranko Z.M., Kurolt I.-C., Markotic A., Cicin-Sain L., Steenpass L.
PLoS ONE 16:E0255622-E0255622(2021).
Culture of SARS-CoV-2 in a panel of laboratory cell lines, permissivity, and differences in growth profile.
Wurtz N., Penant G., Jardot P., Duclos N., La Scola B.
Eur. J. Clin. Microbiol. Infect. Dis. 40:477-484(2021).
Characterisation and proteomic profiling of continuously exposed Cu-resistant variants of the Caco-2 cell line.
Clynes M., O'Sullivan F., Horgan K., Murphy R.
Toxicol. In Vitro 65:104773.1-104773.14(2020).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
Caco-2 cell line.";
Lea T.
(In book chapter) The impact of food bioactives on health. In vitro and ex vivo models; Verhoeckx K., Cotter P., Lopez-Exposito I., Kleiveland C., Lea T., Mackie A., Requena T., Swiatecka D., Wichers H. (eds.); pp.103-111; Springer; Cham; Switzerland (2015).
Pharmacoproteomic characterisation of human colon and rectal cancer.
Weichert W., Knapp S., Feller S.M., Kuster B.
Mol. Syst. Biol. 13:951-951(2017).
Multi-omics of 34 colorectal cancer cell lines -- a resource for biomedical studies.
Myklebost O., Skotheim R.I., Sveen A., Lothe R.A.
Mol. Cancer 16:116.1-116.16(2017).
Characterization of human cancer cell lines by reverse-phase protein arrays.
Liang H.
Cancer Cell 31:225-239(2017).
The proteome of filter-grown Caco-2 cells with a focus on proteins involved in drug disposition.
Olander M., Wisniewski J.R., Matsson P., Lundquist P., Artursson P.
J. Pharm. Sci. 105:817-827(2016).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
N-glycosylation profiling of colorectal cancer cell lines reveals association of fucosylation with differentiation and caudal type homebox 1 (CDX1)/villin mRNA expression.
Tollenaar R.A.E.M., Rombouts Y., Wuhrer M.
Mol. Cell. Proteomics 15:124-140(2016).
A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
OncoImmunology 3:e954893.1-e954893.12(2014).
Highly expressed genes in rapidly proliferating tumor cells as new targets for colorectal cancer treatment.
Sanchez A., Schwartz S. Jr., Bilic J., Mariadason J.M., Arango D.
Clin. Cancer Res. 21:3695-3704(2015).
The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets.
Linnebacher M., Cordero F., Di Nicolantonio F., Bardelli A.
Nat. Commun. 6:7002.1-7002.10(2015).
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).
Feasibility of label-free phosphoproteomics and application to base-line signaling of colorectal cancer cell lines.
Pham T.V., Ishihama Y., Verheul H.M.W., Jimenez C.R.
J. Proteomics 127:247-258(2015).
One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.
Fogh J., Fogh J.M., Orfeo T.
J. Natl. Cancer Inst. 59:221-226(1977).
Absence of HeLa cell contamination in 169 cell lines derived from human tumors.
Fogh J., Wright W.C., Loveless J.D.
J. Natl. Cancer Inst. 58:209-214(1977).
Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability.
Hidalgo I.J., Raub T.J., Borchardt R.T.
Gastroenterology 96:736-749(1989).
Epithelial polarity, villin expression, and enterocytic differentiation of cultured human colon carcinoma cells: a survey of twenty cell lines.
Chantret I., Barbat A., Dussaulx E., Brattain M.G., Zweibaum A.
Cancer Res. 48:1936-1942(1988).
Distinction of seventy-one cultured human tumor cell lines by polymorphic enzyme analysis.
Wright W.C., Daniels W.P., Fogh J.
J. Natl. Cancer Inst. 66:239-247(1981).
Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins.
Rousset M., Zweibaum A., Fogh J.
Cancer Res. 41:1165-1170(1981).
Epithelial properties of human intestinal Caco-2 cells cultured in a serum-free medium.
Hashimoto K., Shimizu M.
Cytotechnology 13:175-184(1993).
Neoplastic progression of human and rat intestinal cell lines after transfer of the ras and polyoma middle T oncogenes.
Gespach C.
Gastroenterology 105:1776-1789(1993).
Human Caco-2 cells transfected with c-Ha-Ras as a model for endocrine differentiation in the large intestine.
van der Linden E.P.M., Pijls M.M.J., ten Kate J., Bosman F.T.
Differentiation 53:51-60(1993).
Beta-catenin mutations in cell lines established from human colorectal cancers.
Ilyas M., Tomlinson I.P.M., Rowan A.J., Pignatelli M., Bodmer W.F.
Proc. Natl. Acad. Sci. U.S.A. 94:10330-10334(1997).
Enterocytic differentiation of the human Caco-2 cell line correlates with alterations in integrin signaling.
Levy P., Robin H., Kornprobst M., Capeau J., Cherqui G.
J. Cell. Physiol. 177:618-627(1998).
Centrosome amplification and instability occurs exclusively in aneuploid, but not in diploid colorectal cancer cell lines, and correlates with numerical chromosomal aberrations.
Neumann T., Jauho A., Auer G., Ried T.
Genes Chromosomes Cancer 27:183-190(2000).
APC mutations in sporadic colorectal tumors: a mutational 'hotspot' and interdependence of the 'two hits'.
Papadopoulou A., Bicknell D.C., Bodmer W.F., Tomlinson I.P.M.
Proc. Natl. Acad. Sci. U.S.A. 97:3352-3357(2000).
Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures.
Wolf E., Gabius H.-J.
J. Cancer Res. Clin. Oncol. 127:375-386(2001).
Short tandem repeat profiling provides an international reference standard for human cell lines.
Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.
Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001).
Immunocytochemical analysis of cell lines derived from solid tumors.
Quentmeier H., Osborn M., Reinhardt J., Zaborski M., Drexler H.G.
J. Histochem. Cytochem. 49:1369-1378(2001).
Spectral karyotype analysis of colon cancer cell lines of the tumor suppressor and mutator pathway.
Koehrle J., Al-Taie O.
Cytogenet. Genome Res. 98:22-28(2002).
Permeability characteristics of parental and clonal human intestinal Caco-2 cell lines differentiated in serum-supplemented and serum-free media.
Ranaldi G., Consalvo R., Sambuy Y., Scarino M.L.
Toxicol. In Vitro 17:761-767(2003).
Infection of cultured intestinal epithelial cells with severe acute respiratory syndrome coronavirus.
Hofmann W.-K., Bauer G., Michaelis M., Rabenau H.F., Doerr H.-W.
Cell. Mol. Life Sci. 61:2100-2112(2004).
Exogenous ACE2 expression allows refractory cell lines to support severe acute respiratory syndrome coronavirus replication.
Peters C.J.
J. Virol. 79:3846-3850(2005).
The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics.
Zucco F.
Cell Biol. Toxicol. 21:1-26(2005).
Analysis of p53 mutations and their expression in 56 colorectal cancer cell lines.
Liu Y., Bodmer W.F.
Proc. Natl. Acad. Sci. U.S.A. 103:976-981(2006).
Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues.
Garcia-Foncillas J.
Mol. Cancer 5:29.1-29.10(2006).
Cell growth, global phosphotyrosine elevation, and c-Met phosphorylation through Src family kinases in colorectal cancer cells.
Emaduddin M., Bicknell D.C., Bodmer W.F., Feller S.M.
Proc. Natl. Acad. Sci. U.S.A. 105:2358-2362(2008).
Genomic and biological characterization of exon 4 KRAS mutations in human cancer.
Lash A., Ladanyi M., Saltz L.B., Heguy A., Paty P.B., Solit D.B.
Cancer Res. 70:5901-5911(2010).
5-fluorouracil response in a large panel of colorectal cancer cell lines is associated with mismatch repair deficiency.
Bracht K., Nicholls A.M., Liu Y., Bodmer W.F.
Br. J. Cancer 103:340-346(2010).
Human embryonic stem cells and metastatic colorectal cancer cells shared the common endogenous human microRNA-26b.
Peng J.-Y., Chen H.-Q., Zhou Y.-K., Liu W.-J., Qin H.-L.
J. Cell. Mol. Med. 15:1941-1954(2011).
Hidalgo, I.J., Raub, T.J., and Borchardt, R.T.: Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability, Gastroenterology, 96, 736-749, 1989 -- the backstory.
Borchardt R.T.
AAPS J. 13:323-327(2011).
Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines.
Orphanides G., French T., Wessels L.F.A.
BMC Med. Genomics 5:66.1-66.15(2012).
Identification of a microRNA expression signature for chemoradiosensitivity of colorectal cancer cells, involving miRNAs-320a, -224, -132 and let7g.
Grade M., Gaedcke J.
Radiother. Oncol. 108:451-457(2013).
Epigenetic and genetic features of 24 colon cancer cell lines.";
Hektoen M., Lind G.E., Lothe R.A.
Oncogenesis 2:e71.1-e71.8(2013).