Capan-2Homo sapiens (Human)Cancer cell line

Also known as: CaPan-2, CAPAN-2, Capan 2, CAPAN 2, Capan2, CAPAN2, CANPAN-2

🤖 AI SummaryBased on 13 publications

Quick Overview

Human pancreatic cancer cell line with K-ras and p53 mutations.

Detailed Summary

Capan-2 is a human pancreatic ductal adenocarcinoma cell line derived from a liver metastasis. It is characterized by mutations in the K-ras gene at codon 12 and the p53 tumor suppressor gene. These genetic alterations are frequently associated with pancreatic cancer progression. The cell line is widely used in research to study the molecular mechanisms of pancreatic carcinogenesis and to evaluate potential therapeutic targets. Capan-2 has been utilized in studies investigating the role of RAS and p53 in tumor development, as well as in metabolite profiling and drug sensitivity assays.

Research Applications

Molecular mechanisms of pancreatic carcinogenesisRAS and p53 mutation analysisMetabolite profilingDrug sensitivity assays

Key Characteristics

K-ras mutation at codon 12p53 mutationLiver metastasis origin
Generated on 6/14/2025

Basic Information

Database IDCVCL_0026
SpeciesHomo sapiens (Human)
Tissue SourcePancreas[UBERON:UBERON_0001264]

Donor Information

Age56
Age CategoryAdult
SexMale
Racecaucasian

Disease Information

DiseasePancreatic ductal adenocarcinoma
LineagePancreas
SubtypePancreatic Adenocarcinoma
OncoTree CodePAAD

DepMap Information

Source TypeATCC
Source IDACH-000107_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleCDKN2Ap.Thr18_Ala19dup (c.52_57dupACGGCC)Homozygous-Unknown, PubMed=7972006
MutationSimpleKRASp.Gly12Val (c.35G>T)HeterozygousAcquiredUnknown, Unknown
MutationSimpleTP53p.Thr125Thr (c.375G>T)UnspecifiedImpairs TP53 splicing dramaticallyfrom parent cell line NCI-H82

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
11,12
D13S317
11,12
D16S539
9,13
D18S51
13
D19S433
13,15
D21S11
31
D2S1338
19,25
D3S1358
17,18
D5S818
11,12
D7S820
9,11
D8S1179
12,13
FGA
21,24
Penta D
13,15
Penta E
11
TH01
9.3
TPOX
8
vWA
16,17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Unraveling altered RNA metabolism in pancreatic cancer cells by liquid-chromatography coupling to ion mobility mass spectrometry.

Wittel U.A., Kammerer B.

Anal. Bioanal. Chem. 411:6319-6328(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Resolution of novel pancreatic ductal adenocarcinoma subtypes by global phosphotyrosine profiling.

Biankin A.V., Wu J.-M., Daly R.J.

Mol. Cell. Proteomics 15:2671-2685(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors.

Manning G., Settleman J., Hatzivassiliou G., Evangelista M.

Proc. Natl. Acad. Sci. U.S.A. 112:E4410-E4417(2015).

The proteomic profile of pancreatic cancer cell lines corresponding to carcinogenesis and metastasis.

Yamada M., Fujii K., Koyama K., Hirohashi S., Kondo T.

J. Proteomics Bioinformatics 2:1-18(2009).

Human pancreatic carcinomas and cell lines reveal frequent and multiple alterations in the p53 and Rb-1 tumor-suppressor genes.

Klein-Szanto A.J.P.

Oncogene 7:1503-1511(1992).

Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer.

Lane D.P., Lemoine N.R.

Br. J. Cancer 64:1076-1082(1991).

Morphological, biological, biochemical, and karyotypic characteristics of human pancreatic ductal adenocarcinoma Capan-2 in tissue culture and the nude mouse.

Loveless J.D.

Cancer Res. 46:5810-5815(1986).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Cell surface antigens of human ovarian and endometrial carcinoma defined by mouse monoclonal antibodies.

Mattes M.J., Cordon-Cardo C., Lewis J.L. Jr., Old L.J., Lloyd K.O.

Proc. Natl. Acad. Sci. U.S.A. 81:568-572(1984).

Distinction of seventy-one cultured human tumor cell lines by polymorphic enzyme analysis.

Wright W.C., Daniels W.P., Fogh J.

J. Natl. Cancer Inst. 66:239-247(1981).

Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins.

Rousset M., Zweibaum A., Fogh J.

Cancer Res. 41:1165-1170(1981).

Lovastatin inhibits pancreatic cancer growth regardless of RAS mutation.

Thompson J.C.

Pancreas 9:657-661(1994).

K-ras and p53 alterations in genomic DNA and transcripts of human pancreatic adenocarcinoma cell lines.

Imamura M., Hiai H., Fukumoto M.

Jpn. J. Cancer Res. 85:1005-1014(1994).

Mutations and altered expression of p16INK4 in human cancer.";

Harris C.C.

Proc. Natl. Acad. Sci. U.S.A. 91:11045-11049(1994).

Comparative analysis of mutations in the p53 and K-ras genes in pancreatic cancer.

Berrozpe G., Schaeffer J., Peinado M.A., Real F.X., Perucho M.

Int. J. Cancer 58:185-191(1994).

Frequent alterations of the tumor suppressor genes p53 and DCC in human pancreatic carcinoma.

Arnold R.

Gastroenterology 106:1645-1651(1994).

Human ductal adenocarcinomas of the pancreas express extracellular matrix proteins.

Kloppel G.

Br. J. Cancer 69:144-151(1994).

p53 and K-RAS alterations in pancreatic epithelial cell lesions.";

Maurer J., Maacke H., Deppert W.

Oncogene 8:289-298(1993).

Specific chromosomal aberrations and amplification of the AIB1 nuclear receptor coactivator gene in pancreatic carcinomas.

Meltzer P.S., Ried T.

Am. J. Pathol. 154:525-536(1999).

Loss of the Y chromosome is a frequent chromosomal imbalance in pancreatic cancer and allows differentiation to chronic pancreatitis.

Leder G., Gansauge F., Sorio C., Scarpa A., Gress T.M.

Int. J. Cancer 91:340-344(2001).

Non-random chromosomal rearrangements in pancreatic cancer cell lines identified by spectral karyotyping.

Sheer D., Moore P.S., Scarpa A., Edwards P.A.W., Lemoine N.R.

Int. J. Cancer 91:350-358(2001).

Immunocytochemical analysis of cell lines derived from solid tumors.

Quentmeier H., Osborn M., Reinhardt J., Zaborski M., Drexler H.G.

J. Histochem. Cytochem. 49:1369-1378(2001).

A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform.

Sipos B., Moser S., Kalthoff H., Torok V., Lohr J.-M., Kloppel G.

Virchows Arch. 442:444-452(2003).

A recurrent chromosome translocation breakpoint in breast and pancreatic cancer cell lines targets the neuregulin/NRG1 gene.

Edwards P.A.W., Chaffanet M.

Genes Chromosomes Cancer 37:333-345(2003).

Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies.

Kern S.E., Goggins M.G., Hruban R.H.

Cancer Res. 63:8614-8622(2003).

Genome-wide array-based comparative genomic hybridization reveals multiple amplification targets and novel homozygous deletions in pancreatic carcinoma cell lines.

Veltman J.A., van Kessel A.G., Hoglund M.

Cancer Res. 64:3052-3059(2004).

Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity.

Hirohashi S.

Pancreas 29:193-203(2004).

Microarray analyses reveal strong influence of DNA copy number alterations on the transcriptional patterns in pancreatic cancer: implications for the interpretation of genomic amplifications.

Gorunova L., van Kessel A.G., Schoenmakers E.F.P.M., Hoglund M.

Oncogene 24:1794-1801(2005).

Synergistic effects of interferon-alpha in combination with chemoradiation on human pancreatic adenocarcinoma.

Marten A.

World J. Gastroenterol. 11:1521-1528(2005).

Activation of Wnt signalling in stroma from pancreatic cancer identified by gene expression profiling.

Schackert H.K., Kloppel G., Kalthoff H., Saeger H.-D., Grutzmann R.

J. Cell. Mol. Med. 12:2823-2835(2008).

Identification of SMURF1 as a possible target for 7q21.3-22.1 amplification detected in a pancreatic cancer cell line by in-house array-based comparative genomic hybridization.

Shiratori K., Hirohashi S., Inazawa J., Imoto I.

Cancer Sci. 99:986-994(2008).

A resource for analysis of microRNA expression and function in pancreatic ductal adenocarcinoma cells.

Mendell J.T.

Cancer Biol. Ther. 8:2013-2024(2009).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Phenotype and genotype of pancreatic cancer cell lines.";

Scaife C.L., Firpo M.A., Mulvihill S.J.

Pancreas 39:425-435(2010).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Essential gene profiles in breast, pancreatic, and ovarian cancer cells.

Rottapel R., Neel B.G., Moffat J.

Cancer Discov. 2:172-189(2012).

Analysis of TP53 mutation status in human cancer cell lines: a reassessment.

Soussi T.

Hum. Mutat. 35:756-765(2014).

KRAS mutational subtype and copy number predict in vitro response of human pancreatic cancer cell lines to MEK inhibition.

Linnartz R., Zubel A., Slamon D.J., Finn R.S.

Br. J. Cancer 111:1788-1801(2014).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).