Capan-2Homo sapiens (Human)Cancer cell line
Also known as: CaPan-2, CAPAN-2, Capan 2, CAPAN 2, Capan2, CAPAN2, CANPAN-2
Quick Overview
Human pancreatic cancer cell line with K-ras and p53 mutations.
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_0026 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Pancreas[UBERON:UBERON_0001264] |
Donor Information
Age | 56 |
---|---|
Age Category | Adult |
Sex | Male |
Race | caucasian |
Disease Information
Disease | Pancreatic ductal adenocarcinoma |
---|---|
Lineage | Pancreas |
Subtype | Pancreatic Adenocarcinoma |
OncoTree Code | PAAD |
DepMap Information
Source Type | ATCC |
---|---|
Source ID | ACH-000107_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
MutationSimple | CDKN2A | p.Thr18_Ala19dup (c.52_57dupACGGCC) | Homozygous | - | Unknown, PubMed=7972006 |
MutationSimple | KRAS | p.Gly12Val (c.35G>T) | Heterozygous | Acquired | Unknown, Unknown |
MutationSimple | TP53 | p.Thr125Thr (c.375G>T) | Unspecified | Impairs TP53 splicing dramatically | from parent cell line NCI-H82 |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).
Pan-cancer proteomic map of 949 human cell lines.";
Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.
Cancer Cell 40:835-849.e8(2022).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
Unraveling altered RNA metabolism in pancreatic cancer cells by liquid-chromatography coupling to ion mobility mass spectrometry.
Wittel U.A., Kammerer B.
Anal. Bioanal. Chem. 411:6319-6328(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
A landscape of pharmacogenomic interactions in cancer.";
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
Cell 166:740-754(2016).
Resolution of novel pancreatic ductal adenocarcinoma subtypes by global phosphotyrosine profiling.
Biankin A.V., Wu J.-M., Daly R.J.
Mol. Cell. Proteomics 15:2671-2685(2016).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors.
Manning G., Settleman J., Hatzivassiliou G., Evangelista M.
Proc. Natl. Acad. Sci. U.S.A. 112:E4410-E4417(2015).
The proteomic profile of pancreatic cancer cell lines corresponding to carcinogenesis and metastasis.
Yamada M., Fujii K., Koyama K., Hirohashi S., Kondo T.
J. Proteomics Bioinformatics 2:1-18(2009).
Human pancreatic carcinomas and cell lines reveal frequent and multiple alterations in the p53 and Rb-1 tumor-suppressor genes.
Klein-Szanto A.J.P.
Oncogene 7:1503-1511(1992).
Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer.
Lane D.P., Lemoine N.R.
Br. J. Cancer 64:1076-1082(1991).
Morphological, biological, biochemical, and karyotypic characteristics of human pancreatic ductal adenocarcinoma Capan-2 in tissue culture and the nude mouse.
Loveless J.D.
Cancer Res. 46:5810-5815(1986).
Cell surface antigens of human ovarian and endometrial carcinoma defined by mouse monoclonal antibodies.
Mattes M.J., Cordon-Cardo C., Lewis J.L. Jr., Old L.J., Lloyd K.O.
Proc. Natl. Acad. Sci. U.S.A. 81:568-572(1984).
Distinction of seventy-one cultured human tumor cell lines by polymorphic enzyme analysis.
Wright W.C., Daniels W.P., Fogh J.
J. Natl. Cancer Inst. 66:239-247(1981).
Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins.
Rousset M., Zweibaum A., Fogh J.
Cancer Res. 41:1165-1170(1981).
Lovastatin inhibits pancreatic cancer growth regardless of RAS mutation.
Thompson J.C.
Pancreas 9:657-661(1994).
K-ras and p53 alterations in genomic DNA and transcripts of human pancreatic adenocarcinoma cell lines.
Imamura M., Hiai H., Fukumoto M.
Jpn. J. Cancer Res. 85:1005-1014(1994).
Mutations and altered expression of p16INK4 in human cancer.";
Harris C.C.
Proc. Natl. Acad. Sci. U.S.A. 91:11045-11049(1994).
Comparative analysis of mutations in the p53 and K-ras genes in pancreatic cancer.
Berrozpe G., Schaeffer J., Peinado M.A., Real F.X., Perucho M.
Int. J. Cancer 58:185-191(1994).
Frequent alterations of the tumor suppressor genes p53 and DCC in human pancreatic carcinoma.
Arnold R.
Gastroenterology 106:1645-1651(1994).
Human ductal adenocarcinomas of the pancreas express extracellular matrix proteins.
Kloppel G.
Br. J. Cancer 69:144-151(1994).
p53 and K-RAS alterations in pancreatic epithelial cell lesions.";
Maurer J., Maacke H., Deppert W.
Oncogene 8:289-298(1993).
Specific chromosomal aberrations and amplification of the AIB1 nuclear receptor coactivator gene in pancreatic carcinomas.
Meltzer P.S., Ried T.
Am. J. Pathol. 154:525-536(1999).
Loss of the Y chromosome is a frequent chromosomal imbalance in pancreatic cancer and allows differentiation to chronic pancreatitis.
Leder G., Gansauge F., Sorio C., Scarpa A., Gress T.M.
Int. J. Cancer 91:340-344(2001).
Non-random chromosomal rearrangements in pancreatic cancer cell lines identified by spectral karyotyping.
Sheer D., Moore P.S., Scarpa A., Edwards P.A.W., Lemoine N.R.
Int. J. Cancer 91:350-358(2001).
Immunocytochemical analysis of cell lines derived from solid tumors.
Quentmeier H., Osborn M., Reinhardt J., Zaborski M., Drexler H.G.
J. Histochem. Cytochem. 49:1369-1378(2001).
A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform.
Sipos B., Moser S., Kalthoff H., Torok V., Lohr J.-M., Kloppel G.
Virchows Arch. 442:444-452(2003).
A recurrent chromosome translocation breakpoint in breast and pancreatic cancer cell lines targets the neuregulin/NRG1 gene.
Edwards P.A.W., Chaffanet M.
Genes Chromosomes Cancer 37:333-345(2003).
Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies.
Kern S.E., Goggins M.G., Hruban R.H.
Cancer Res. 63:8614-8622(2003).
Genome-wide array-based comparative genomic hybridization reveals multiple amplification targets and novel homozygous deletions in pancreatic carcinoma cell lines.
Veltman J.A., van Kessel A.G., Hoglund M.
Cancer Res. 64:3052-3059(2004).
Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity.
Hirohashi S.
Pancreas 29:193-203(2004).
Microarray analyses reveal strong influence of DNA copy number alterations on the transcriptional patterns in pancreatic cancer: implications for the interpretation of genomic amplifications.
Gorunova L., van Kessel A.G., Schoenmakers E.F.P.M., Hoglund M.
Oncogene 24:1794-1801(2005).
Synergistic effects of interferon-alpha in combination with chemoradiation on human pancreatic adenocarcinoma.
Marten A.
World J. Gastroenterol. 11:1521-1528(2005).
Activation of Wnt signalling in stroma from pancreatic cancer identified by gene expression profiling.
Schackert H.K., Kloppel G., Kalthoff H., Saeger H.-D., Grutzmann R.
J. Cell. Mol. Med. 12:2823-2835(2008).
Identification of SMURF1 as a possible target for 7q21.3-22.1 amplification detected in a pancreatic cancer cell line by in-house array-based comparative genomic hybridization.
Shiratori K., Hirohashi S., Inazawa J., Imoto I.
Cancer Sci. 99:986-994(2008).
A resource for analysis of microRNA expression and function in pancreatic ductal adenocarcinoma cells.
Mendell J.T.
Cancer Biol. Ther. 8:2013-2024(2009).
Signatures of mutation and selection in the cancer genome.";
Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
Nature 463:893-898(2010).
A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
Haber D.A.
Cancer Res. 70:2158-2164(2010).
Phenotype and genotype of pancreatic cancer cell lines.";
Scaife C.L., Firpo M.A., Mulvihill S.J.
Pancreas 39:425-435(2010).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
Essential gene profiles in breast, pancreatic, and ovarian cancer cells.
Rottapel R., Neel B.G., Moffat J.
Cancer Discov. 2:172-189(2012).
Analysis of TP53 mutation status in human cancer cell lines: a reassessment.
Soussi T.
Hum. Mutat. 35:756-765(2014).
KRAS mutational subtype and copy number predict in vitro response of human pancreatic cancer cell lines to MEK inhibition.
Linnartz R., Zubel A., Slamon D.J., Finn R.S.
Br. J. Cancer 111:1788-1801(2014).