Hep-G2Homo sapiens (Human)Cancer cell line
Also known as: HEP-G2, Hep G2, HEP G2, HepG2, HEPG2
Quick Overview
Hep-G2 is a human hepatoblastoma cell line used in cancer research and drug development.
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_0027 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Liver[UBERON:UBERON_0002107] |
Donor Information
Age | 15 |
---|---|
Age Category | Pediatric |
Sex | Male |
Race | caucasian |
Disease Information
Disease | Hepatoblastoma |
---|---|
Lineage | Liver |
Subtype | Hepatoblastoma |
OncoTree Code | LIHB |
DepMap Information
Source Type | ATCC |
---|---|
Source ID | ACH-000739_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
MutationSimple | NRAS | p.Gln61Leu (c.182A>T) | Unspecified | - | PubMed=26214590 |
MutationSimple | TERT | c.1-124C>T (c.228C>T) (C228T) | Unspecified | In promoter | from parent cell line Hep-G2 |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).
The cancer SENESCopedia: a delineation of cancer cell senescence.";
Leite de Oliveira R., Wessels L.F.A., Bernards R.
Cell Rep. 36:109441.1-109441.22(2021).
RNA sequencing of hepatobiliary cancer cell lines: data and applications to mutational and transcriptomic profiling.
Umu S.U., Rounge T.B., Roessler S., Lorenzo-Bermejo J.
Cancers (Basel) 12:2510.1-2510.14(2020).
Empowering shotgun mass spectrometry with 2DE: a HepG2 study.";
Kiseleva O., Ponomarenko E., Poverennaya E.
Int. J. Mol. Sci. 21:3813.1-3813.16(2020).
Quantitative proteomics of the Cancer Cell Line Encyclopedia.";
Sellers W.R., Gygi S.P.
Cell 180:387-402.e16(2020).
NADPH-cytochrome P450 reductase expression and enzymatic activity in primary-like human hepatocytes and HepG2 cells for in vitro biotransformation studies.
Schulz C., Kammerer S., Kupper J.-H.
Clin. Hemorheol. Microcirc. 73:249-260(2019).
Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types.
van 't Veer L.J., Butte A.J., Goldstein T., Sirota M.
Nat. Commun. 10:3574.1-3574.11(2019).
A pharmacogenomic landscape in human liver cancers.";
Hui L.-J.
Cancer Cell 36:179-193.e11(2019).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
Analysis of liver cancer cell lines identifies agents with likely efficacy against hepatocellular carcinoma and markers of response.
Couchy G., Calderaro J., Nault J.-C., Zucman-Rossi J., Rebouissou S.
Gastroenterology 157:760-776(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
Haplotype-resolved and integrated genome analysis of the cancer cell line HepG2.
Song G., Perrin D., Wong W.H., Ji H.P., Abyzov A., Urban A.E.
Nucleic Acids Res. 47:3846-3861(2019).
Screening human cell lines for viral infections applying RNA-Seq data analysis.
Uphoff C.C., Pommerenke C., Denkmann S.A., Drexler H.G.
PLoS ONE 14:E0210404-E0210404(2019).
Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines.
Lobinski R., Chavatte L.
Biochim. Biophys. Acta 1862:2493-2505(2018).
Comparison of protein expression between human livers and the hepatic cell lines HepG2, Hep3B, and Huh7 using SWATH and MRM-HR proteomics: Focusing on drug-metabolizing enzymes.
Shi J., Wang X.-W., Lyu L.-Y., Jiang H., Zhu H.-J.
Drug Metab. Pharmacokinet. 33:133-140(2018).
Characterization of human cancer cell lines by reverse-phase protein arrays.
Liang H.
Cancer Cell 31:225-239(2017).
Modulating the selectivity of affinity absorbents to multi-phosphopeptides by a competitive substitution strategy.
Liu Z.-Y., Wang F.-J., Chen J., Zhou Y., Zou H.-F.
J. Chromatogr. A 1461:35-41(2016).
Phosphorylation of mTOR Ser2481 is a key target limiting the efficacy of rapalogs for treating hepatocellular carcinoma.
Murakami Y., Yano H., Kuwano M., Ono M.
Oncotarget 7:47403-47417(2016).
The HepaRG cell line, a superior in vitro model to L-02, HepG2 and hiHeps cell lines for assessing drug-induced liver injury.
Wu Y., Geng X.-C., Wang J.-F., Miao Y.-F., Lu Y.-L., Li B.
Cell Biol. Toxicol. 32:37-59(2016).
In-depth quantitative analysis and comparison of the human hepatocyte and hepatoma cell line HepG2 proteomes.
Wisniewski J.R., Vildhede A., Noren A., Artursson P.
J. Proteomics 136:234-247(2016).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
Comparative proteomic characterization of 4 human liver-derived single cell culture models reveals significant variation in the capacity for drug disposition, bioactivation, and detoxication.
Ingelman-Sundberg M., Goldring C.E.P., Kitteringham N.R., Park B.K.
Toxicol. Sci. 147:412-424(2015).
A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
OncoImmunology 3:e954893.1-e954893.12(2014).
The p53 gene status and other cellular characteristics of human cell lines maintained in our laboratory.
Ohashi R., Namba M.
Tissue Cult. Res. Commun. 16:173-178(1997).
Comparison of protein expression patterns between hepatocellular carcinoma cell lines and a hepatoblastoma cell line.
Chan C.M.-L., Yu J.W.S., Chan A.T.-C., Sung J.J.-Y.
Clin. Proteomics 1:313-331(2004).
Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line.
Aden D.P., Fogel A., Plotkin S.A., Damjanov I., Knowles B.B.
Nature 282:615-616(1979).
Purification of alpha 1-microglobulin produced by human hepatoma cell lines. Biochemical characterization and comparison with alpha 1-microglobulin synthesized by human hepatocytes.
Revillard J.-P.
Eur. J. Biochem. 165:699-704(1987).
Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen.
Knowles B.B., Howe C.C., Aden D.P.
Science 209:497-499(1980).
Chromosomes of human hepatoma cell lines.";
Simon D., Aden D.P., Knowles B.B.
Int. J. Cancer 30:27-33(1982).
Mutations and altered expression of p16INK4 in human cancer.";
Harris C.C.
Proc. Natl. Acad. Sci. U.S.A. 91:11045-11049(1994).
HLA expression in hepatocellular carcinoma cell lines.";
Wadee A.A., Paterson A., Coplan K.A., Reddy S.G.
Clin. Exp. Immunol. 97:328-333(1994).
Retinoblastoma and p53 tumor suppressor genes in human hepatoma cell lines.
Ponchel F., Yakicier C., Ji J.-W., Ozturk M.
FASEB J. 7:1407-1413(1993).
Cytogenetic studies on human liver cancer cell lines.";
Chen H.-L., Chiu T.-S., Chen P.-J., Chen D.-S.
Cancer Genet. Cytogenet. 65:161-166(1993).
p53 gene mutation and integrated hepatitis B viral DNA sequences in human liver cancer cell lines.
Harris C.C.
Carcinogenesis 14:987-992(1993).
Persistence of hepatitis C virus RNA in established human hepatocellular carcinoma cell lines.
Kosaka T., Tsuji T., Namba M.
J. Med. Virol. 48:133-140(1996).
CD4+ hepatic cancer-specific cytotoxic T lymphocytes in patients with hepatocellular carcinoma.
Itoh K.
Cell. Immunol. 177:176-181(1997).
Yeast functional assay of the p53 gene status in human cell lines maintained in our laboratory.
Fukaya K.-i., Ishioka C., Namba M.
Acta Med. Okayama 51:261-265(1997).
A comprehensive karyotypic study on human hepatocellular carcinoma by spectral karyotyping.
Wong N., Lai P.B.-S., Pang E., Leung T.W.-T., Lau J.W.-Y., Johnson P.J.
Hepatology 32:1060-1068(2000).
Short tandem repeat profiling provides an international reference standard for human cell lines.
Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.
Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001).
Relationship between acetaldehyde levels and cell survival in ethanol-metabolizing hepatoma cells.
Clemens D.L., Forman A., Jerrells T.R., Sorrell M.F., Tuma D.J.
Hepatology 35:1196-1204(2002).
TFDP1, CUL4A, and CDC16 identified as targets for amplification at 13q34 in hepatocellular carcinomas.
Inazawa J.
Hepatology 35:1476-1484(2002).
Mutations of the BRAF gene in human cancer.";
Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.
Nature 417:949-954(2002).
Establishment of human hepatocellular carcinoma multidrug-resistance cell line (HepG2/Adm) and study apoptosis induced by low-frequency pulse ultrasound exposure.
Zhai B.-J., Wu F., Shao Z.-Y., Hu K., Zhao C.-L., Wang Z.-B.
Zhonghua Gan Zang Bing Za Zhi 12:95-98(2004).
Chemosensitivity profile of cancer cell lines and identification of genes determining chemosensitivity by an integrated bioinformatical approach using cDNA arrays.
Yamori T.
Mol. Cancer Ther. 4:399-412(2005).
Recombinant Hep G2 cells that express alcohol dehydrogenase and cytochrome P450 2E1 as a model of ethanol-elicited cytotoxicity.
Donohue T.M., Osna N.A., Clemens D.L.
Int. J. Biochem. Cell Biol. 38:92-101(2006).
Stable HepG2- and Huh7-based human hepatoma cell lines for efficient regulated expression of infectious hepatitis B virus.
Sun D.-X., Nassal M.
J. Hepatol. 45:636-645(2006).
Profiling and authentication of human cell lines using short tandem repeat (STR) loci: report from the National Cell Bank of Iran.
Azari S., Ahmadi N., Jeddi-Tehrani M., Shokri F.
Biologicals 35:195-202(2007).
Clinically relevant radioresistant cells efficiently repair DNA double-strand breaks induced by X-rays.
Ohkubo Y., Fukumoto M.
Cancer Sci. 100:747-752(2009).
Hep G2 is a hepatoblastoma-derived cell line.";
Lopez-Terrada D.H., Cheung S.-W., Finegold M.J., Knowles B.B.
Hum. Pathol. 40:1512-1515(2009).
Proteomic studies of cholangiocarcinoma and hepatocellular carcinoma cell secretomes.
Svasti J.
J. Biomed. Biotechnol. 2010:437143.1-437143.18(2010).
A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
Haber D.A.
Cancer Res. 70:2158-2164(2010).
A comparison of whole genome gene expression profiles of HepaRG cells and HepG2 cells to primary human hepatocytes and human liver tissues.
Hart S.N., Li Y., Nakamoto K., Subileau E.-A., Steen D., Zhong X.-B.
Drug Metab. Dispos. 38:988-994(2010).
Characterization of HuH6, Hep3B, HepG2 and HLE liver cancer cell lines by WNT/beta-catenin pathway, microRNA expression and protein expression profile.
Macino G., Tanzarella C., Taruscio D.
Cell. Mol. Biol. 56:OL1299-OL1317(2010).
Initial characterization of the human central proteome.";
Burckstummer T., Bennett K.L., Superti-Furga G., Colinge J.
BMC Syst. Biol. 5:17.1-17.13(2011).
Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins.
Geiger T., Wehner A., Schaab C., Cox J., Mann M.
Mol. Cell. Proteomics 11:M111.014050-M111.014050(2012).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
Dynamic DNA methylation across diverse human cell lines and tissues.
Crawford G.E., Absher D.M., Wold B.J., Myers R.M.
Genome Res. 23:555-567(2013).
Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma.
Xu J.-C.
Hepatology 58:706-717(2013).
High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions.
Laurent C., Laurent A., Cherqui D., Balabaud C., Zucman-Rossi J.
Nat. Commun. 4:2218.1-2218.7(2013).
Genetic characteristics of the human hepatic stellate cell line LX-2.";
Arnold N., Siebert R., Xu L.-M., Friedman S.L., Bergmann C.
PLoS ONE 8:E75692-E75692(2013).
Detection of viral proteins in human cells lines by xeno-proteomics: elimination of the last valid excuse for not testing every cellular proteome dataset for viral proteins.
Chernobrovkin A.L., Zubarev R.A.
PLoS ONE 9:E91433-E91433(2014).
A comprehensive transcriptional portrait of human cancer cell lines.
Settleman J., Seshagiri S., Zhang Z.-M.
Nat. Biotechnol. 33:306-312(2015).