Hep-G2Homo sapiens (Human)Cancer cell line

Also known as: HEP-G2, Hep G2, HEP G2, HepG2, HEPG2

🤖 AI SummaryBased on 8 publications

Quick Overview

Hep-G2 is a human hepatoblastoma cell line used in cancer research and drug development.

Detailed Summary

Hep-G2 is a widely used human hepatoblastoma cell line derived from a 15-year-old male of European ancestry. It is extensively utilized in cancer research, particularly in the study of liver cancer mechanisms, drug metabolism, and toxicology. The cell line is known for its high levels of cytochrome P450 enzymes, making it a valuable model for studying drug metabolism and liver toxicity. Hep-G2 is also used in proteomic and genomic studies to understand cancer progression and therapeutic responses. Its genomic instability and diverse mutational profiles make it a relevant model for investigating the complexities of cancer biology.

Research Applications

Cancer researchDrug metabolism studiesToxicology screeningProteomic analysisGenomic studies

Key Characteristics

High cytochrome P450 enzyme expressionGenomic instabilityDiverse mutational profilesUsed in drug toxicity studies
Generated on 6/14/2025

Basic Information

Database IDCVCL_0027
SpeciesHomo sapiens (Human)
Tissue SourceLiver[UBERON:UBERON_0002107]

Donor Information

Age15
Age CategoryPediatric
SexMale
Racecaucasian

Disease Information

DiseaseHepatoblastoma
LineageLiver
SubtypeHepatoblastoma
OncoTree CodeLIHB

DepMap Information

Source TypeATCC
Source IDACH-000739_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleNRASp.Gln61Leu (c.182A>T)Unspecified-PubMed=26214590
MutationSimpleTERTc.1-124C>T (c.228C>T) (C228T)UnspecifiedIn promoterfrom parent cell line Hep-G2

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X,Y
CSF1PO
10,11
D10S1248
13
D12S391
21,25
D13S317
9,13
D16S539
12,13
D18S51
13,14
D19S433
15.2
D1S1656
11,12
D21S11
29,31
D22S1045
16
D2S1338
19,20
D2S441
11.3,14
D3S1358
15,16
D5S818
11,12
D7S820
10
D8S1179
15,16
DYS391
12
FGA
22,25
Penta D
9,13
Penta E
15,20
TH01
9
TPOX
8,9
vWA
17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

The cancer SENESCopedia: a delineation of cancer cell senescence.";

Leite de Oliveira R., Wessels L.F.A., Bernards R.

Cell Rep. 36:109441.1-109441.22(2021).

RNA sequencing of hepatobiliary cancer cell lines: data and applications to mutational and transcriptomic profiling.

Umu S.U., Rounge T.B., Roessler S., Lorenzo-Bermejo J.

Cancers (Basel) 12:2510.1-2510.14(2020).

Empowering shotgun mass spectrometry with 2DE: a HepG2 study.";

Kiseleva O., Ponomarenko E., Poverennaya E.

Int. J. Mol. Sci. 21:3813.1-3813.16(2020).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

NADPH-cytochrome P450 reductase expression and enzymatic activity in primary-like human hepatocytes and HepG2 cells for in vitro biotransformation studies.

Schulz C., Kammerer S., Kupper J.-H.

Clin. Hemorheol. Microcirc. 73:249-260(2019).

Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types.

van 't Veer L.J., Butte A.J., Goldstein T., Sirota M.

Nat. Commun. 10:3574.1-3574.11(2019).

A pharmacogenomic landscape in human liver cancers.";

Hui L.-J.

Cancer Cell 36:179-193.e11(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Analysis of liver cancer cell lines identifies agents with likely efficacy against hepatocellular carcinoma and markers of response.

Couchy G., Calderaro J., Nault J.-C., Zucman-Rossi J., Rebouissou S.

Gastroenterology 157:760-776(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Haplotype-resolved and integrated genome analysis of the cancer cell line HepG2.

Song G., Perrin D., Wong W.H., Ji H.P., Abyzov A., Urban A.E.

Nucleic Acids Res. 47:3846-3861(2019).

Screening human cell lines for viral infections applying RNA-Seq data analysis.

Uphoff C.C., Pommerenke C., Denkmann S.A., Drexler H.G.

PLoS ONE 14:E0210404-E0210404(2019).

Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines.

Lobinski R., Chavatte L.

Biochim. Biophys. Acta 1862:2493-2505(2018).

Comparison of protein expression between human livers and the hepatic cell lines HepG2, Hep3B, and Huh7 using SWATH and MRM-HR proteomics: Focusing on drug-metabolizing enzymes.

Shi J., Wang X.-W., Lyu L.-Y., Jiang H., Zhu H.-J.

Drug Metab. Pharmacokinet. 33:133-140(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

Modulating the selectivity of affinity absorbents to multi-phosphopeptides by a competitive substitution strategy.

Liu Z.-Y., Wang F.-J., Chen J., Zhou Y., Zou H.-F.

J. Chromatogr. A 1461:35-41(2016).

Phosphorylation of mTOR Ser2481 is a key target limiting the efficacy of rapalogs for treating hepatocellular carcinoma.

Murakami Y., Yano H., Kuwano M., Ono M.

Oncotarget 7:47403-47417(2016).

The HepaRG cell line, a superior in vitro model to L-02, HepG2 and hiHeps cell lines for assessing drug-induced liver injury.

Wu Y., Geng X.-C., Wang J.-F., Miao Y.-F., Lu Y.-L., Li B.

Cell Biol. Toxicol. 32:37-59(2016).

In-depth quantitative analysis and comparison of the human hepatocyte and hepatoma cell line HepG2 proteomes.

Wisniewski J.R., Vildhede A., Noren A., Artursson P.

J. Proteomics 136:234-247(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Comparative proteomic characterization of 4 human liver-derived single cell culture models reveals significant variation in the capacity for drug disposition, bioactivation, and detoxication.

Ingelman-Sundberg M., Goldring C.E.P., Kitteringham N.R., Park B.K.

Toxicol. Sci. 147:412-424(2015).

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

OncoImmunology 3:e954893.1-e954893.12(2014).

The p53 gene status and other cellular characteristics of human cell lines maintained in our laboratory.

Ohashi R., Namba M.

Tissue Cult. Res. Commun. 16:173-178(1997).

Comparison of protein expression patterns between hepatocellular carcinoma cell lines and a hepatoblastoma cell line.

Chan C.M.-L., Yu J.W.S., Chan A.T.-C., Sung J.J.-Y.

Clin. Proteomics 1:313-331(2004).

Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line.

Aden D.P., Fogel A., Plotkin S.A., Damjanov I., Knowles B.B.

Nature 282:615-616(1979).

Purification of alpha 1-microglobulin produced by human hepatoma cell lines. Biochemical characterization and comparison with alpha 1-microglobulin synthesized by human hepatocytes.

Revillard J.-P.

Eur. J. Biochem. 165:699-704(1987).

Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen.

Knowles B.B., Howe C.C., Aden D.P.

Science 209:497-499(1980).

Chromosomes of human hepatoma cell lines.";

Simon D., Aden D.P., Knowles B.B.

Int. J. Cancer 30:27-33(1982).

Mutations and altered expression of p16INK4 in human cancer.";

Harris C.C.

Proc. Natl. Acad. Sci. U.S.A. 91:11045-11049(1994).

HLA expression in hepatocellular carcinoma cell lines.";

Wadee A.A., Paterson A., Coplan K.A., Reddy S.G.

Clin. Exp. Immunol. 97:328-333(1994).

Retinoblastoma and p53 tumor suppressor genes in human hepatoma cell lines.

Ponchel F., Yakicier C., Ji J.-W., Ozturk M.

FASEB J. 7:1407-1413(1993).

Cytogenetic studies on human liver cancer cell lines.";

Chen H.-L., Chiu T.-S., Chen P.-J., Chen D.-S.

Cancer Genet. Cytogenet. 65:161-166(1993).

p53 gene mutation and integrated hepatitis B viral DNA sequences in human liver cancer cell lines.

Harris C.C.

Carcinogenesis 14:987-992(1993).

Persistence of hepatitis C virus RNA in established human hepatocellular carcinoma cell lines.

Kosaka T., Tsuji T., Namba M.

J. Med. Virol. 48:133-140(1996).

CD4+ hepatic cancer-specific cytotoxic T lymphocytes in patients with hepatocellular carcinoma.

Itoh K.

Cell. Immunol. 177:176-181(1997).

Yeast functional assay of the p53 gene status in human cell lines maintained in our laboratory.

Fukaya K.-i., Ishioka C., Namba M.

Acta Med. Okayama 51:261-265(1997).

A comprehensive karyotypic study on human hepatocellular carcinoma by spectral karyotyping.

Wong N., Lai P.B.-S., Pang E., Leung T.W.-T., Lau J.W.-Y., Johnson P.J.

Hepatology 32:1060-1068(2000).

Short tandem repeat profiling provides an international reference standard for human cell lines.

Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.

Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001).

Relationship between acetaldehyde levels and cell survival in ethanol-metabolizing hepatoma cells.

Clemens D.L., Forman A., Jerrells T.R., Sorrell M.F., Tuma D.J.

Hepatology 35:1196-1204(2002).

TFDP1, CUL4A, and CDC16 identified as targets for amplification at 13q34 in hepatocellular carcinomas.

Inazawa J.

Hepatology 35:1476-1484(2002).

Mutations of the BRAF gene in human cancer.";

Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.

Nature 417:949-954(2002).

Establishment of human hepatocellular carcinoma multidrug-resistance cell line (HepG2/Adm) and study apoptosis induced by low-frequency pulse ultrasound exposure.

Zhai B.-J., Wu F., Shao Z.-Y., Hu K., Zhao C.-L., Wang Z.-B.

Zhonghua Gan Zang Bing Za Zhi 12:95-98(2004).

Chemosensitivity profile of cancer cell lines and identification of genes determining chemosensitivity by an integrated bioinformatical approach using cDNA arrays.

Yamori T.

Mol. Cancer Ther. 4:399-412(2005).

Recombinant Hep G2 cells that express alcohol dehydrogenase and cytochrome P450 2E1 as a model of ethanol-elicited cytotoxicity.

Donohue T.M., Osna N.A., Clemens D.L.

Int. J. Biochem. Cell Biol. 38:92-101(2006).

Stable HepG2- and Huh7-based human hepatoma cell lines for efficient regulated expression of infectious hepatitis B virus.

Sun D.-X., Nassal M.

J. Hepatol. 45:636-645(2006).

Profiling and authentication of human cell lines using short tandem repeat (STR) loci: report from the National Cell Bank of Iran.

Azari S., Ahmadi N., Jeddi-Tehrani M., Shokri F.

Biologicals 35:195-202(2007).

Clinically relevant radioresistant cells efficiently repair DNA double-strand breaks induced by X-rays.

Ohkubo Y., Fukumoto M.

Cancer Sci. 100:747-752(2009).

Hep G2 is a hepatoblastoma-derived cell line.";

Lopez-Terrada D.H., Cheung S.-W., Finegold M.J., Knowles B.B.

Hum. Pathol. 40:1512-1515(2009).

Proteomic studies of cholangiocarcinoma and hepatocellular carcinoma cell secretomes.

Svasti J.

J. Biomed. Biotechnol. 2010:437143.1-437143.18(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

A comparison of whole genome gene expression profiles of HepaRG cells and HepG2 cells to primary human hepatocytes and human liver tissues.

Hart S.N., Li Y., Nakamoto K., Subileau E.-A., Steen D., Zhong X.-B.

Drug Metab. Dispos. 38:988-994(2010).

Characterization of HuH6, Hep3B, HepG2 and HLE liver cancer cell lines by WNT/beta-catenin pathway, microRNA expression and protein expression profile.

Macino G., Tanzarella C., Taruscio D.

Cell. Mol. Biol. 56:OL1299-OL1317(2010).

Initial characterization of the human central proteome.";

Burckstummer T., Bennett K.L., Superti-Furga G., Colinge J.

BMC Syst. Biol. 5:17.1-17.13(2011).

Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins.

Geiger T., Wehner A., Schaab C., Cox J., Mann M.

Mol. Cell. Proteomics 11:M111.014050-M111.014050(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Dynamic DNA methylation across diverse human cell lines and tissues.

Crawford G.E., Absher D.M., Wold B.J., Myers R.M.

Genome Res. 23:555-567(2013).

Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma.

Xu J.-C.

Hepatology 58:706-717(2013).

High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions.

Laurent C., Laurent A., Cherqui D., Balabaud C., Zucman-Rossi J.

Nat. Commun. 4:2218.1-2218.7(2013).

Genetic characteristics of the human hepatic stellate cell line LX-2.";

Arnold N., Siebert R., Xu L.-M., Friedman S.L., Bergmann C.

PLoS ONE 8:E75692-E75692(2013).

Detection of viral proteins in human cells lines by xeno-proteomics: elimination of the last valid excuse for not testing every cellular proteome dataset for viral proteins.

Chernobrovkin A.L., Zubarev R.A.

PLoS ONE 9:E91433-E91433(2014).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Common telomerase reverse transcriptase promoter mutations in hepatocellular carcinomas from different geographical locations.

Cevik D., Yildiz G., Ozturk M.

World J. Gastroenterol. 21:311-317(2015).