HeLaHomo sapiens (Human)Cancer cell line
Also known as: HELA, Hela, He La, He-La, HeLa-CCL2, Henrietta Lacks cells, Helacyton gartleri
Quick Overview
Human cervical cancer cell line used in cancer research.
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_0030 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Uterus, cervix[UBERON:UBERON_0000002] |
Donor Information
Age | 30 |
---|---|
Age Category | Adult |
Sex | Female |
Disease Information
Disease | Human papillomavirus-related cervical adenocarcinoma |
---|---|
Lineage | Cervix |
Subtype | Endocervical Adenocarcinoma |
OncoTree Code | ECAD |
DepMap Information
Source Type | ATCC |
---|---|
Source ID | ACH-001086_source |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
A quantitative spatial proteomics analysis of proteome turnover in human cells.
Scott M., Barton G., Lamond A.I.
Mol. Cell. Proteomics 11:M111.011429-M111.011429(2012).
Multiple approaches revealed MGc80-3 as a somatic hybrid with HeLa cells rather than a gastric cancer cell line.
Liu Y.-Q.
Int. J. Cancer 154:155-168(2024).
Pan-cancer proteomic map of 949 human cell lines.";
Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.
Cancer Cell 40:835-849.e8(2022).
Proteomic datasets of HeLa and SiHa cell lines acquired by DDA-PASEF and diaPASEF.
Du X.-X., Wong L.-S., Goh W.W.-B.
Data Brief 41:107919.1-107919.7(2022).
Culture of SARS-CoV-2 in a panel of laboratory cell lines, permissivity, and differences in growth profile.
Wurtz N., Penant G., Jardot P., Duclos N., La Scola B.
Eur. J. Clin. Microbiol. Infect. Dis. 40:477-484(2021).
HeLa-CCL2 cell heterogeneity studied by single-cell DNA and RNA sequencing.
Su X.-D.
PLoS ONE 14:E0225466-E0225466(2019).
Strong anion exchange-mediated phosphoproteomics reveals extensive human non-canonical phosphorylation.
Eyers C.E.
EMBO J. 38:e100847.1-e100847.22(2019).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
Genetic ancestry analysis reveals misclassification of commonly used cancer cell lines.
Mitra R., Nonn L., Kimbro K.S., Kittles R.A.
Cancer Epidemiol. Biomarkers Prev. 28:1003-1009(2019).
Multi-omic measurements of heterogeneity in HeLa cells across laboratories.
Aebersold R.
Nat. Biotechnol. 37:314-322(2019).
Large-scale reanalysis of publicly available HeLa cell proteomics data in the context of the Human Proteome Project.
Robin T., Bairoch A., Muller M., Lisacek F., Lane L.
J. Proteome Res. 17:4160-4170(2018).
Genomic characterization of human papillomavirus-positive and -negative human squamous cell cancer cell lines.
Frederick M.J., Myers J.N., Pickering C.R., Johnson F.M.
Oncotarget 8:86369-86383(2017).
An optimized shotgun strategy for the rapid generation of comprehensive human proteomes.
Lindbjerg Andersen C., Nielsen M.L., Olsen J.V.
Cell Syst. 4:587-599.e4(2017).
Cervical cancer cell line secretome highlights the roles of transforming growth factor-beta-induced protein ig-h3, peroxiredoxin-2, and NRF2 on cervical carcinogenesis.
Loutradis D., Vlahou A., Anagnou N.P., Pappa K.I.
BioMed Res. Int. 2017:4180703.1-4180703.15(2017).
Characterization of human cancer cell lines by reverse-phase protein arrays.
Liang H.
Cancer Cell 31:225-239(2017).
The Tissue Culture Laboratory of Dr. George Otto Gey 60 yrs ago as recalled by a former student.
Ambrose C.T.
In Vitro Cell. Dev. Biol. Anim. 53:467-473(2017).
A landscape of pharmacogenomic interactions in cancer.";
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
Cell 166:740-754(2016).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
Rapid high-pH reverse phase stagetip for sensitive small-scale membrane proteomic profiling.
Chen Y.-J.
Anal. Chem. 87:12016-12023(2015).
A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
OncoImmunology 3:e954893.1-e954893.12(2014).
A mass spectrometric-derived cell surface protein atlas.";
Aebersold R., Boheler K.R., Zandstra P.W., Wollscheid B.
PLoS ONE 10:E0121314-E0121314(2015).
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).
Multifunctional reagents for quantitative proteome-wide analysis of protein modification in human cells and dynamic profiling of protein lipidation during vertebrate development.
Magee A.I., Tate E.W.
Angew. Chem. Int. Ed. Engl. 54:5948-5951(2015).
A comprehensive transcriptional portrait of human cancer cell lines.
Settleman J., Seshagiri S., Zhang Z.-M.
Nat. Biotechnol. 33:306-312(2015).
Confetti: a multiprotease map of the HeLa proteome for comprehensive proteomics.
Guo X.-F., Trudgian D.C., Lemoff A., Yadavalli S., Mirzaei H.
Mol. Cell. Proteomics 13:1573-1584(2014).
Detection of viral proteins in human cells lines by xeno-proteomics: elimination of the last valid excuse for not testing every cellular proteome dataset for viral proteins.
Chernobrovkin A.L., Zubarev R.A.
PLoS ONE 9:E91433-E91433(2014).
Individual karyotypes at the origins of cervical carcinomas.";
Duesberg P.H.
Mol. Cytogenet. 6:44.1-44.23(2013).
The haplotype-resolved genome and epigenome of the aneuploid HeLa cancer cell line.
Martin B.K., Qiu R.-L., Lee C., Shendure J.
Nature 500:207-211(2013).
Reversibility of membrane N-glycome of HeLa cells upon treatment with epigenetic inhibitors.
Lauc G., Zoldos V.
PLoS ONE 8:E54672-E54672(2013).
Comprehensive profiling of N-linked glycosylation sites in HeLa cells using hydrazide enrichment.
Malerod H., Graham R.L.J., Sweredoski M.J., Hess S.
J. Proteome Res. 12:248-259(2013).
Amplified genes may be overexpressed, unchanged, or downregulated in cervical cancer cell lines.
Rangel-Lopez A., Kofman S., Berumen J.
PLoS ONE 7:E32667-E32667(2012).
Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins.
Geiger T., Wehner A., Schaab C., Cox J., Mann M.
Mol. Cell. Proteomics 11:M111.014050-M111.014050(2012).
Deep proteome and transcriptome mapping of a human cancer cell line.
Paabo S., Mann M.
Mol. Syst. Biol. 7:548-548(2011).
Chromosome abnormalities in human tumor cells in culture.";
Biedler J.L.
(In book chapter) Human tumor cells in vitro; Fogh J. (eds.); pp.359-394; Springer; New York; USA (1975).
The animal cell culture collection.";
Stulberg C.S., Coriell L.L., Kniazeff A.J., Shannon J.E.
In Vitro 5:1-16(1970).
Tissue typing of cells in culture. III. HLA antigens of established human cell lines. Attempts at typing by the mixed hemadsorption technique.
Espmark J.A., Ahlqvist-Roth L., Sarne L., Persson A.
Tissue Antigens 11:279-286(1978).
Genetic characteristics of the HeLa cell.";
Kennett R.H., Bodmer J.G., Young D., Bodmer W.F.
Science 191:392-394(1976).
Application of highly polymorphic DNA markers to the identification of HeLa cell sublines.
Kataoka E., Honma M., Ohnishi K., Sofuni T., Mizusawa H.
In Vitro Cell. Dev. Biol. Anim. 28:553-556(1992).
Structure and transcription of human papillomavirus sequences in cervical carcinoma cells.
Stremlau A., zur Hausen H.
Nature 314:111-114(1985).
Presence and expression of human papillomavirus sequences in human cervical carcinoma cell lines.
Yee C., Krishnan-Hewlett I., Baker C.C., Schlegel R., Howley P.M.
Am. J. Pathol. 119:361-366(1985).
Integration sites of human papillomavirus 18 DNA sequences on HeLa cell chromosomes.
Popescu N.C., DiPaolo J.A., Amsbaugh S.C.
Cytogenet. Cell Genet. 44:58-62(1987).
Re-evaluation of HeLa, HeLa S3, and HEp-2 karyotypes.";
Chen T.-R.
Cytogenet. Cell Genet. 48:19-24(1988).
In vitro response of cervical cancer cell lines CaSki, HeLa, and ME-180 to the antiestrogen tamoxifen.
Grenman S.E., Shapira A., Carey T.E.
Gynecol. Oncol. 30:228-238(1988).
George Otto Gey (1899-1970). The HeLa cell and a reappraisal of its origin.
Jones H.W. Jr., McKusick V.A., Harper P.S., Wuu K.-D.
Obstet. Gynecol. 38:945-949(1971).
Glucose-6-phosphate dehydrogenase isoenzymes in human cell cultures determined by sucrose-agar gel and cellulose acetate zymograms.
Peterson W.D. Jr., Stulberg C.S., Swanborg N.K., Robinson A.R.
Proc. Soc. Exp. Biol. Med. 128:772-776(1968).
Defective repair of alkylated DNA by human tumour and SV40-transformed human cell strains.
Lubiniecki A.S., Girardi A.J., Galloway S.M., Bynum G.D.
Nature 288:724-727(1980).
The mass production and distribution of HeLa cells at Tuskegee Institute, 1953-55.
Brown R.W., Henderson J.H.M.
J. Hist. Med. Allied Sci. 38:415-431(1983).
Cell culture quality control by rapid isoenzymatic characterization.
Halton D.M., Peterson W.D. Jr., Hukku B.
In Vitro 19:16-24(1983).
Repair of O6-methylguanine in DNA by demethylation is lacking in Mer- human tumor cell strains.
Yarosh D.B., Foote R.S., Mitra S., Day R.S. 3rd
Carcinogenesis 4:199-205(1983).
Distinction of seventy-one cultured human tumor cell lines by polymorphic enzyme analysis.
Wright W.C., Daniels W.P., Fogh J.
J. Natl. Cancer Inst. 66:239-247(1981).
Correlation between HPV positivity and state of the p53 gene in cervical carcinoma cell lines.
Fukuyama K., Hori K., Sugimori H.
Gynecol. Oncol. 48:104-109(1993).
Comprehensive and definitive molecular cytogenetic characterization of HeLa cells by spectral karyotyping.
Zimonjic D.B., Popescu N.C., Ried T.
Cancer Res. 59:141-150(1999).
Nucleotide sequences and further characterization of human papillomavirus DNA present in the CaSki, SiHa and HeLa cervical carcinoma cell lines.
Meissner J.D.
J. Gen. Virol. 80:1725-1733(1999).
Short tandem repeat profiling provides an international reference standard for human cell lines.
Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.
Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001).
Immunocytochemical analysis of cell lines derived from solid tumors.
Quentmeier H., Osborn M., Reinhardt J., Zaborski M., Drexler H.G.
J. Histochem. Cytochem. 49:1369-1378(2001).
HeLa cells 50 years on: the good, the bad and the ugly.";
Masters J.R.W.
Nat. Rev. Cancer 2:315-319(2002).
Identification of microsatellite instability and mismatch repair gene mutations in breast cancer cell lines.
Santibanez-Koref M.F., Schlag P.M., Scherneck S.
Genes Chromosomes Cancer 37:29-35(2003).
Detection of DNA damage induced by space radiation in Mir and space shuttle.
Nakano T., Nagaoka S.
J. Radiat. Res. 43 Suppl. 1:S133-S136(2002).
Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix.
Scherer W.F., Syverton J.T., Gey G.O.
J. Exp. Med. 97:695-710(1953).
The viral range in vitro of a malignant human epithelial cell (strain HeLa, Gey). I. Multiplication of herpes simplex, pseudorabies, and vaccinia viruses.
Scherer W.F., Syverton J.T.
Am. J. Pathol. 30:1057-1073(1954).
Culture characteristics of four permanent lines of human cancer cells.
Moore A.E., Sabachewsky L., Toolan H.W.
Cancer Res. 15:598-602(1955).
The effect of space flights on living human cells aboard Discoverer XVIII.
Katzberg A.A.
Tech. Doc. Rep. SAMTDR USAF Sch. Aerosp. Med. 62:43.1-43.4(1962).
Animal cell strains. The Cell Culture Collection Committee has assembled and certified 23 strains of animal cells.
Unknown authors
Science 146:241-243(1964).
Large-scale characterization of HeLa cell nuclear phosphoproteins.";
Li J.-X., Cohn M.A., Cantley L.C., Gygi S.P.
Proc. Natl. Acad. Sci. U.S.A. 101:12130-12135(2004).
Smad4 deficiency in cervical carcinoma cells.";
Schwarte-Waldhoff I.
Oncogene 24:810-819(2005).
Correlation between DNA alterations and p53 and p16 protein expression in cancer cell lines.
Murai Y., Hayashi S., Takahashi H., Tsuneyama K., Takano Y.
Pathol. Res. Pract. 201:109-115(2005).
A rapid method for viable cell titration and clone production with HeLa cells in tissue culture: the use of X-irradiated cells to supply conditioning factors.
Puck T.T., Marcus P.I.
Proc. Natl. Acad. Sci. U.S.A. 41:432-437(1955).
Combined array-comparative genomic hybridization and single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex genetic alterations in cervical cancer.
Gorter A., Kenter G.G., Fleuren G.J., Jordanova E.S.
BMC Genomics 8:53.1-53.13(2007).
A novel L1 retrotransposon marker for HeLa cell line identification.
Badge R.M.
BioTechniques 46:277-284(2009).
Henrietta Lacks, HeLa cells, and cell culture contamination.";
Lucey B.P., Nelson-Rees W.A., Hutchins G.M.
Arch. Pathol. Lab. Med. 133:1463-1467(2009).
Rapid characterisation of cell cultures by matrix-assisted laser desorption/ionisation mass spectrometric typing.
Karger A., Bettin B., Lenk M., Mettenleiter T.C.
J. Virol. Methods 164:116-121(2010).
Anecdotal Information
- Was flown since the 1960s on at least ten different space missions: Korabl-Sputnik-2, Vostok-1, Vostok-4, Vostok-5 and Vostok-6, Voshkod 1 and Zond-5, Discoverer XVIII, Progress M-35/Mir and Shuttle STS-89
- The HeLa cell line and its story inspired Australian artist Cynthia Verspaget to embark in 2003 on a artistic project 'The Anarchy Cell Line' (TAnCL) where she mixed her blood with HeLa cells. This work later spawned a PhD thesis (CelloPub=CLPUB00376) where among other things she makes the observation that two main taxonomical distinctions present in the zombie, living/dead and human/nonhuman, are also present in the HeLa cell line
- The fascinating story of the HeLa cell line and of Henrietta Lacks from whom these cells originate are described in the book of Rebecca Skloot (CelloPub=CLPUB00377)
- The HeLa cell line which was established in February 1951 is the oldest human immortal cell line