PC-3Homo sapiens (Human)Cancer cell line

Also known as: PC3, PC.3

🤖 AI SummaryBased on 11 publications

Quick Overview

Human prostate cancer cell line used in cancer research and drug development.

Detailed Summary

PC-3 is a human prostate cancer cell line derived from a bone metastasis. It is widely used in cancer research for studying tumor biology, drug resistance, and metastasis. The cell line is androgen-independent and lacks functional androgen receptors, making it a valuable model for studying castration-resistant prostate cancer. PC-3 cells are also used to investigate the role of various genetic and molecular factors in cancer progression and therapeutic response.

Research Applications

Cancer biologyDrug resistanceMetastasisCastration-resistant prostate cancerGenetic and molecular factors in cancer progression

Key Characteristics

Androgen-independentLacks functional androgen receptorsUsed for studying castration-resistant prostate cancerCommonly used in drug development and screening
Generated on 6/14/2025

Basic Information

Database IDCVCL_0035
SpeciesHomo sapiens (Human)
Tissue SourceBone[UBERON:UBERON_0002481]

Donor Information

Age62
Age CategoryAdult
SexMale
Racecaucasian

Disease Information

DiseaseProstate carcinoma
LineageProstate
SubtypeProstate Adenocarcinoma
OncoTree CodePRAD

DepMap Information

Source TypeATCC
Source IDACH-000090_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Lys139Argfs*31 (c.414delC) (413delC)Homozygous-from parent cell line PC-3

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
11
D10S1248
16
D12S391
21
D13S317
11
D16S539
11
D18S51
13,14
D19S433
14
D1S1656
12,16
D21S11
29,31
D22S1045
15
D2S1338
18,20
D2S441
10,11
D3S1358
16
D5S818
13
D7S820
8
D8S1179
13
FGA
24
Penta D
9
Penta E
10,17
TH01
6,7
TPOX
8,9
vWA
17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.

Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.

PLoS ONE 9:E92047-E92047(2014).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Establishment and characterization of a docetaxel-resistant human prostate cancer cell line.

Wu L.-H., Zhao Q.-W.

Oncol. Lett. 20:230.1-230.7(2020).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Secretome profiling of PC3/nKR cells, a novel highly migrating prostate cancer subline derived from PC3 cells.

Chun S.Y., Lee J.H., Ha Y.-S., Kwon T.G., Lee S.

PLoS ONE 14:E0220807-E0220807(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Genetic ancestry analysis reveals misclassification of commonly used cancer cell lines.

Mitra R., Nonn L., Kimbro K.S., Kittles R.A.

Cancer Epidemiol. Biomarkers Prev. 28:1003-1009(2019).

Paclitaxel resistance and the role of miRNAs in prostate cancer cell lines.

Sahin A., Balci F.

World J. Urol. 37:1117-1126(2019).

Serum-free complete medium, an alternative medium to mimic androgen deprivation in human prostate cancer cell line models.

Wu Y., Mohler J.L.

Prostate 78:213-221(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A map of mobile DNA insertions in the NCI-60 human cancer cell panel.

Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.

Mob. DNA 7:20.1-20.11(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.

Vandesompele J.

Sci. Data 3:160052-160052(2016).

Data for identification of GPI-anchored peptides and omega-sites in cancer cell lines.

Masuishi Y., Kimura Y., Arakawa N., Hirano H.

Data Brief 7:1302-1305(2016).

Identification of glycosylphosphatidylinositol-anchored proteins and omega-sites using TiO2-based affinity purification followed by hydrogen fluoride treatment.

Masuishi Y., Kimura Y., Arakawa N., Hirano H.

J. Proteomics 139:77-83(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Integrated proteomic and glycoproteomic analyses of prostate cancer cells reveal glycoprotein alteration in protein abundance and glycosylation.

Chen L.-J., Yang S., Pasay J., Rubin A., Zhang H.

Mol. Cell. Proteomics 14:2753-2763(2015).

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

OncoImmunology 3:e954893.1-e954893.12(2014).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

STR profiling of human cell lines: challenges and possible solutions to the growing problem.

Hart R.P., Furtado M.R.

J. Forensic Res. 2 Suppl. 2:5-5(2011).

Establishment and characterization of a human prostatic carcinoma cell line (PC-3).

Kaighn M.E., Narayan K.S., Ohnuki Y., Lechner J.F., Jones L.W.

Invest. Urol. 17:16-23(1979).

Prostate carcinoma: tissue culture cell lines.";

Kaighn M.E., Lechner J.F., Narayan K.S., Jones L.W.

Natl. Cancer Inst. Monogr. 49:17-21(1978).

Wild-type p53 suppresses growth of human prostate cancer cells containing mutant p53 alleles.

Isaacs W.B., Carter B.S., Ewing C.M.

Cancer Res. 51:4716-4720(1991).

Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.

Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.

Cancer Res. 48:589-601(1988).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Human urologic cancer cell lines.";

Williams R.D.

Invest. Urol. 17:359-363(1980).

p53 oncogene mutations in three human prostate cancer cell lines.";

Carroll A.G., Voeller H.J., Sugars L., Gelmann E.P.

Prostate 23:123-134(1993).

The effects of omega-3 and omega-6 fatty acids on in vitro prostate cancer growth.

Pandalai P.K., Pilat M.J., Yamazaki K., Naik H., Pienta K.J.

Anticancer Res. 16:815-820(1996).

Immortalized and tumorigenic adult human prostatic epithelial cell lines: characteristics and applications Part 2. Tumorigenic cell lines.

Webber M.M., Bello D., Quader S.T.A.

Prostate 30:58-64(1997).

Genetic alterations in prostate cancer cell lines detected by comparative genomic hybridization.

Nupponen N.N., Hyytinen E.-R., Kallioniemi A.H., Visakorpi T.

Cancer Genet. Cytogenet. 101:53-57(1998).

Gene expression profiling of alveolar rhabdomyosarcoma with cDNA microarrays.

Smith P.D., Jiang Y., Gooden G.C., Trent J.M., Meltzer P.S.

Cancer Res. 58:5009-5013(1998).

Systematic variation in gene expression patterns in human cancer cell lines.

Botstein D., Brown P.O.

Nat. Genet. 24:227-235(2000).

Characterization of chromosomal abnormalities in prostate cancer cell lines by spectral karyotyping.

Isola J.J., Visakorpi T., Bergerheim U.S.R., Larsson C.

Cytogenet. Cell Genet. 87:225-232(1999).

Role of antioxidant systems in human androgen-independent prostate cancer cells.

Suzuki Y., Kondo Y., Himeno S., Nemoto K., Akimoto M., Imura N.

Prostate 43:144-149(2000).

Altered expression of BRCA1, BRCA2, and a newly identified BRCA2 exon 12 deletion variant in malignant human ovarian, prostate, and breast cancer cell lines.

Rauh-Adelmann C., Lau K.-M., Sabeti N., Long J.P., Mok S.C., Ho S.-M.

Mol. Carcinog. 28:236-246(2000).

IPM-FISH, a new M-FISH approach using IRS-PCR painting probes: application to the analysis of seven human prostate cell lines.

Aurich-Costa J., Vannier A., Gregoire E., Nowak F., Cherif D.

Genes Chromosomes Cancer 30:143-160(2001).

The use of multicolor fluorescence technologies in the characterization of prostate carcinoma cell lines: a comparison of multiplex fluorescence in situ hybridization and spectral karyotyping data.

Strefford J.C., Lillington D.M., Young B.D., Oliver R.T.D.

Cancer Genet. Cytogenet. 124:112-121(2001).

Widely used prostate carcinoma cell lines share common origins.";

van Bokhoven A., Varella-Garcia M., Korch C.T., Hessels D., Miller G.J.

Prostate 47:36-51(2001).

Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures.

Wolf E., Gabius H.-J.

J. Cancer Res. Clin. Oncol. 127:375-386(2001).

Short tandem repeat profiling provides an international reference standard for human cell lines.

Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.

Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001).

Genome-wide screening for complete genetic loss in prostate cancer by comparative hybridization onto cDNA microarrays.

Crossland S., Stratton M.R., Wooster R., Campbell C., Cooper C.S.

Oncogene 22:1247-1252(2003).

Human prostate cancer cell lines.";

Russell P.J., Kingsley E.A.

Methods Mol. Med. 81:21-39(2003).

Molecular characterization of human prostate carcinoma cell lines.";

Smith E.E., Miller H.L., Nordeen S.K., Miller G.J., Lucia M.S.

Prostate 57:205-225(2003).

Genome-wide characterization of gene expression variations and DNA copy number changes in prostate cancer cell lines.

Brooks J.D.

Prostate 63:187-197(2005).

HLA class I and II genotype of the NCI-60 cell lines.";

Morse H.C. 3rd, Stroncek D., Marincola F.M.

J. Transl. Med. 3:11.1-11.8(2005).

Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.

Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.

Mol. Cancer Ther. 5:2606-2612(2006).

Profiling and authentication of human cell lines using short tandem repeat (STR) loci: report from the National Cell Bank of Iran.

Azari S., Ahmadi N., Jeddi-Tehrani M., Shokri F.

Biologicals 35:195-202(2007).

The establishment of two paclitaxel-resistant prostate cancer cell lines and the mechanisms of paclitaxel resistance with two cell lines.

Namiki M.

Prostate 67:955-967(2007).

DNA fingerprinting of the NCI-60 cell line panel.";

Chanock S.J., Weinstein J.N.

Mol. Cancer Ther. 8:713-724(2009).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

PC3 is a cell line characteristic of prostatic small cell carcinoma.

Huang J.-T.

Prostate 71:1668-1679(2011).

Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.

Ambudkar S.V., Gottesman M.M.

Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).

Critical role of O-linked beta-N-acetylglucosamine transferase in prostate cancer invasion, angiogenesis, and metastasis.

Reginato M.J.

J. Biol. Chem. 287:11070-11081(2012).

JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs.

Kong D.-X., Yamori T.

Bioorg. Med. Chem. 20:1947-1951(2012).

Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.

Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.

PLoS ONE 7:E31628-E31628(2012).

Identification of cancer cell-line origins using fluorescence image-based phenomic screening.

Yoon C.N., Chang Y.-T.

PLoS ONE 7:E32096-E32096(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.

Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.

Science 336:1040-1044(2012).

A novel approach for characterizing microsatellite instability in cancer cells.

Lu Y.-H., Soong T.D., Elemento O.

PLoS ONE 8:E63056-E63056(2013).

The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.

Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.

Cancer Res. 73:4372-4382(2013).

Global proteome analysis of the NCI-60 cell line panel.";

Wilhelm M., Kuster B.

Cell Rep. 4:609-620(2013).

The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.

Hirshfield K.M., Oltvai Z.N., Vazquez A.

Cancer Metab. 1:20.1-20.13(2013).

Carbon ion irradiation of the human prostate cancer cell line PC3: a whole genome microarray study.

Michaux A., Gregoire V., Baatout S.

Int. J. Oncol. 44:1056-1072(2014).