PC-3Homo sapiens (Human)Cancer cell line
Also known as: PC3, PC.3
Quick Overview
Human prostate cancer cell line used in cancer research and drug development.
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_0035 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Bone[UBERON:UBERON_0002481] |
Donor Information
Age | 62 |
---|---|
Age Category | Adult |
Sex | Male |
Race | caucasian |
Disease Information
Disease | Prostate carcinoma |
---|---|
Lineage | Prostate |
Subtype | Prostate Adenocarcinoma |
OncoTree Code | PRAD |
DepMap Information
Source Type | ATCC |
---|---|
Source ID | ACH-000090_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
MutationSimple | TP53 | p.Lys139Argfs*31 (c.414delC) (413delC) | Homozygous | - | from parent cell line PC-3 |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.
Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.
PLoS ONE 9:E92047-E92047(2014).
Pan-cancer proteomic map of 949 human cell lines.";
Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.
Cancer Cell 40:835-849.e8(2022).
Establishment and characterization of a docetaxel-resistant human prostate cancer cell line.
Wu L.-H., Zhao Q.-W.
Oncol. Lett. 20:230.1-230.7(2020).
Quantitative proteomics of the Cancer Cell Line Encyclopedia.";
Sellers W.R., Gygi S.P.
Cell 180:387-402.e16(2020).
Secretome profiling of PC3/nKR cells, a novel highly migrating prostate cancer subline derived from PC3 cells.
Chun S.Y., Lee J.H., Ha Y.-S., Kwon T.G., Lee S.
PLoS ONE 14:E0220807-E0220807(2019).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
Genetic ancestry analysis reveals misclassification of commonly used cancer cell lines.
Mitra R., Nonn L., Kimbro K.S., Kittles R.A.
Cancer Epidemiol. Biomarkers Prev. 28:1003-1009(2019).
Paclitaxel resistance and the role of miRNAs in prostate cancer cell lines.
Sahin A., Balci F.
World J. Urol. 37:1117-1126(2019).
Serum-free complete medium, an alternative medium to mimic androgen deprivation in human prostate cancer cell line models.
Wu Y., Mohler J.L.
Prostate 78:213-221(2018).
Characterization of human cancer cell lines by reverse-phase protein arrays.
Liang H.
Cancer Cell 31:225-239(2017).
A map of mobile DNA insertions in the NCI-60 human cancer cell panel.
Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.
Mob. DNA 7:20.1-20.11(2016).
A landscape of pharmacogenomic interactions in cancer.";
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
Cell 166:740-754(2016).
Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.
Vandesompele J.
Sci. Data 3:160052-160052(2016).
Data for identification of GPI-anchored peptides and omega-sites in cancer cell lines.
Masuishi Y., Kimura Y., Arakawa N., Hirano H.
Data Brief 7:1302-1305(2016).
Identification of glycosylphosphatidylinositol-anchored proteins and omega-sites using TiO2-based affinity purification followed by hydrogen fluoride treatment.
Masuishi Y., Kimura Y., Arakawa N., Hirano H.
J. Proteomics 139:77-83(2016).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
Integrated proteomic and glycoproteomic analyses of prostate cancer cells reveal glycoprotein alteration in protein abundance and glycosylation.
Chen L.-J., Yang S., Pasay J., Rubin A., Zhang H.
Mol. Cell. Proteomics 14:2753-2763(2015).
A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
OncoImmunology 3:e954893.1-e954893.12(2014).
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).
A comprehensive transcriptional portrait of human cancer cell lines.
Settleman J., Seshagiri S., Zhang Z.-M.
Nat. Biotechnol. 33:306-312(2015).
STR profiling of human cell lines: challenges and possible solutions to the growing problem.
Hart R.P., Furtado M.R.
J. Forensic Res. 2 Suppl. 2:5-5(2011).
Establishment and characterization of a human prostatic carcinoma cell line (PC-3).
Kaighn M.E., Narayan K.S., Ohnuki Y., Lechner J.F., Jones L.W.
Invest. Urol. 17:16-23(1979).
Prostate carcinoma: tissue culture cell lines.";
Kaighn M.E., Lechner J.F., Narayan K.S., Jones L.W.
Natl. Cancer Inst. Monogr. 49:17-21(1978).
Wild-type p53 suppresses growth of human prostate cancer cells containing mutant p53 alleles.
Isaacs W.B., Carter B.S., Ewing C.M.
Cancer Res. 51:4716-4720(1991).
Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.
Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.
Cancer Res. 48:589-601(1988).
p53 oncogene mutations in three human prostate cancer cell lines.";
Carroll A.G., Voeller H.J., Sugars L., Gelmann E.P.
Prostate 23:123-134(1993).
The effects of omega-3 and omega-6 fatty acids on in vitro prostate cancer growth.
Pandalai P.K., Pilat M.J., Yamazaki K., Naik H., Pienta K.J.
Anticancer Res. 16:815-820(1996).
Immortalized and tumorigenic adult human prostatic epithelial cell lines: characteristics and applications Part 2. Tumorigenic cell lines.
Webber M.M., Bello D., Quader S.T.A.
Prostate 30:58-64(1997).
Genetic alterations in prostate cancer cell lines detected by comparative genomic hybridization.
Nupponen N.N., Hyytinen E.-R., Kallioniemi A.H., Visakorpi T.
Cancer Genet. Cytogenet. 101:53-57(1998).
Gene expression profiling of alveolar rhabdomyosarcoma with cDNA microarrays.
Smith P.D., Jiang Y., Gooden G.C., Trent J.M., Meltzer P.S.
Cancer Res. 58:5009-5013(1998).
Systematic variation in gene expression patterns in human cancer cell lines.
Botstein D., Brown P.O.
Nat. Genet. 24:227-235(2000).
Characterization of chromosomal abnormalities in prostate cancer cell lines by spectral karyotyping.
Isola J.J., Visakorpi T., Bergerheim U.S.R., Larsson C.
Cytogenet. Cell Genet. 87:225-232(1999).
Role of antioxidant systems in human androgen-independent prostate cancer cells.
Suzuki Y., Kondo Y., Himeno S., Nemoto K., Akimoto M., Imura N.
Prostate 43:144-149(2000).
Altered expression of BRCA1, BRCA2, and a newly identified BRCA2 exon 12 deletion variant in malignant human ovarian, prostate, and breast cancer cell lines.
Rauh-Adelmann C., Lau K.-M., Sabeti N., Long J.P., Mok S.C., Ho S.-M.
Mol. Carcinog. 28:236-246(2000).
IPM-FISH, a new M-FISH approach using IRS-PCR painting probes: application to the analysis of seven human prostate cell lines.
Aurich-Costa J., Vannier A., Gregoire E., Nowak F., Cherif D.
Genes Chromosomes Cancer 30:143-160(2001).
The use of multicolor fluorescence technologies in the characterization of prostate carcinoma cell lines: a comparison of multiplex fluorescence in situ hybridization and spectral karyotyping data.
Strefford J.C., Lillington D.M., Young B.D., Oliver R.T.D.
Cancer Genet. Cytogenet. 124:112-121(2001).
Widely used prostate carcinoma cell lines share common origins.";
van Bokhoven A., Varella-Garcia M., Korch C.T., Hessels D., Miller G.J.
Prostate 47:36-51(2001).
Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures.
Wolf E., Gabius H.-J.
J. Cancer Res. Clin. Oncol. 127:375-386(2001).
Short tandem repeat profiling provides an international reference standard for human cell lines.
Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.
Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001).
Genome-wide screening for complete genetic loss in prostate cancer by comparative hybridization onto cDNA microarrays.
Crossland S., Stratton M.R., Wooster R., Campbell C., Cooper C.S.
Oncogene 22:1247-1252(2003).
Human prostate cancer cell lines.";
Russell P.J., Kingsley E.A.
Methods Mol. Med. 81:21-39(2003).
Molecular characterization of human prostate carcinoma cell lines.";
Smith E.E., Miller H.L., Nordeen S.K., Miller G.J., Lucia M.S.
Prostate 57:205-225(2003).
Genome-wide characterization of gene expression variations and DNA copy number changes in prostate cancer cell lines.
Brooks J.D.
Prostate 63:187-197(2005).
HLA class I and II genotype of the NCI-60 cell lines.";
Morse H.C. 3rd, Stroncek D., Marincola F.M.
J. Transl. Med. 3:11.1-11.8(2005).
Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.
Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.
Mol. Cancer Ther. 5:2606-2612(2006).
Profiling and authentication of human cell lines using short tandem repeat (STR) loci: report from the National Cell Bank of Iran.
Azari S., Ahmadi N., Jeddi-Tehrani M., Shokri F.
Biologicals 35:195-202(2007).
The establishment of two paclitaxel-resistant prostate cancer cell lines and the mechanisms of paclitaxel resistance with two cell lines.
Namiki M.
Prostate 67:955-967(2007).
DNA fingerprinting of the NCI-60 cell line panel.";
Chanock S.J., Weinstein J.N.
Mol. Cancer Ther. 8:713-724(2009).
Signatures of mutation and selection in the cancer genome.";
Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
Nature 463:893-898(2010).
PC3 is a cell line characteristic of prostatic small cell carcinoma.
Huang J.-T.
Prostate 71:1668-1679(2011).
Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.
Ambudkar S.V., Gottesman M.M.
Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).
Critical role of O-linked beta-N-acetylglucosamine transferase in prostate cancer invasion, angiogenesis, and metastasis.
Reginato M.J.
J. Biol. Chem. 287:11070-11081(2012).
JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs.
Kong D.-X., Yamori T.
Bioorg. Med. Chem. 20:1947-1951(2012).
Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.
Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.
PLoS ONE 7:E31628-E31628(2012).
Identification of cancer cell-line origins using fluorescence image-based phenomic screening.
Yoon C.N., Chang Y.-T.
PLoS ONE 7:E32096-E32096(2012).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.
Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.
Science 336:1040-1044(2012).
A novel approach for characterizing microsatellite instability in cancer cells.
Lu Y.-H., Soong T.D., Elemento O.
PLoS ONE 8:E63056-E63056(2013).
The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.
Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.
Cancer Res. 73:4372-4382(2013).
Global proteome analysis of the NCI-60 cell line panel.";
Wilhelm M., Kuster B.
Cell Rep. 4:609-620(2013).
The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.
Hirshfield K.M., Oltvai Z.N., Vazquez A.
Cancer Metab. 1:20.1-20.13(2013).