SK-MEL-30Homo sapiens (Human)Cancer cell line

Also known as: AW-Mel, SKMEL30, Sk Mel30, SKMEL-30, SK Mel 30, SK-Mel-30

🤖 AI SummaryBased on 13 publications

Quick Overview

Human melanoma cell line with BRAF V600E mutation and PTEN loss.

Detailed Summary

SK-MEL-30 is a human melanoma cell line characterized by the presence of the BRAF V600E mutation and PTEN loss. These genetic alterations are associated with resistance to RAF inhibitors and dependence on MEK signaling for proliferation. The cell line is commonly used in studies investigating the mechanisms of drug resistance and the role of the MAPK and PI3K/AKT pathways in melanoma progression. Research on SK-MEL-30 has contributed to understanding the interplay between BRAF, PTEN, and MEK in tumor development and therapeutic response.

Research Applications

Investigation of BRAF V600E mutation and PTEN loss in melanomaStudy of MEK inhibitor resistance mechanismsAnalysis of MAPK and PI3K/AKT pathway interactionsDrug response profiling for targeted therapies

Key Characteristics

BRAF V600E mutationPTEN lossMEK dependenceResistance to RAF inhibitors
Generated on 6/14/2025

Basic Information

Database IDCVCL_0039
SpeciesHomo sapiens (Human)

Donor Information

Age67
Age CategoryAdult
SexMale
Racecaucasian

Disease Information

DiseaseCutaneous melanoma
LineageSkin
SubtypeCutaneous Melanoma
OncoTree CodeSKCM

DepMap Information

Source TypeDSMZ
Source IDACH-000810_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Thr284Argfs*21 (c.851_852delCA) (p.R283fs, c.849_850del2)Heterozygous-Unknown, Unknown
MutationSimpleTERTc.1-124C>T (c.228C>T) (C228T)UnspecifiedIn promoterfrom parent cell line Hep-G2
MutationSimpleNRASp.Gln61Lys (c.181C>A)UnspecifiedAcquired during resistance selection processPubMed=26214590
MutationSimpleCDKN2Ap.Pro114Leu (c.341C>T) (p.Ala128Ala, c.384C>T)Homozygous-Unknown, Unknown, PubMed=9598804
MutationSimpleAPCp.Gln1406Ter (c.4216C>T)Heterozygous-Unknown, Unknown
MutationSimpleAPCp.Gly1339Arg (c.4015G>C)Heterozygous-Unknown, Unknown
Gene deletionCDKN2B-Homozygous-PubMed=35933914

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X,Y
CSF1PO
10
D13S317
8,11
D16S539
8,11
D18S51
12,14
D19S433
14,15
D21S11
29,31.2
D2S1338
19,21
D3S1358
15,16
D5S818
9,12
D7S820
8,9
D8S1179
8,14
FGA
20,21
Penta D
12
Penta E
5,14
TH01
6
TPOX
8,11
vWA
15,17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Screening human cell lines for viral infections applying RNA-Seq data analysis.

Uphoff C.C., Pommerenke C., Denkmann S.A., Drexler H.G.

PLoS ONE 14:E0210404-E0210404(2019).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Loss of NF1 in cutaneous melanoma is associated with RAS activation and MEK dependence.

Rosen N., Solit D.B.

Cancer Res. 74:2340-2350(2014).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Concurrent loss of the PTEN and RB1 tumor suppressors attenuates RAF dependence in melanomas harboring (V600E)BRAF.

Wolchok J.D., Houghton A.N., Solit D.B.

Oncogene 31:446-457(2012).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma.

Tsao H., Goel V., Wu H., Yang G., Haluska F.G.

J. Invest. Dermatol. 122:337-341(2004).

Immunocytochemical analysis of cell lines derived from solid tumors.

Quentmeier H., Osborn M., Reinhardt J., Zaborski M., Drexler H.G.

J. Histochem. Cytochem. 49:1369-1378(2001).

Relative reciprocity of NRAS and PTEN/MMAC1 alterations in cutaneous melanoma cell lines.

Tsao H., Zhang X., Fowlkes K., Haluska F.G.

Cancer Res. 60:1800-1804(2000).

Virtually 100% of melanoma cell lines harbor alterations at the DNA level within CDKN2A, CDKN2B, or one of their downstream targets.

Fountain J.W.

Genes Chromosomes Cancer 22:157-163(1998).

Production and characterization of antibodies against human tyrosinase.

Bouchard B., Vijayasaradhi S., Houghton A.N.

J. Invest. Dermatol. 102:291-295(1994).

Surface antigens of melanocytes and melanomas. Markers of melanocyte differentiation and melanoma subsets.

Houghton A.N., Eisinger M., Albino A.P., Cairncross J.G., Old L.J.

J. Exp. Med. 156:1755-1766(1982).

Serological survey of normal humans for natural antibody to cell surface antigens of melanoma.

Old L.J.

Proc. Natl. Acad. Sci. U.S.A. 77:4260-4264(1980).

Detection of cell surface and intracellular antigens by human monoclonal antibodies. Hybrid cell lines derived from lymphocytes of patients with malignant melanoma.

Old L.J.

J. Exp. Med. 158:53-65(1983).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Monoclonal antibody to an intracellular antigen images human melanoma transplants in nu/nu mice.

Zanzonico P.B., Bigler R.E., Yeh S., Oettgen H.F., Old L.J.

Proc. Natl. Acad. Sci. U.S.A. 84:4200-4204(1987).

A molecular mechanism of complement resistance of human melanoma cells.

Panneerselvam M., Welt S., Old L.J., Vogel C.-W.

J. Immunol. 136:2534-2541(1986).

Induction of growth factor RNA expression in human malignant melanoma: markers of transformation.

Albino A.P., Davis B.M., Nanus D.M.

Cancer Res. 51:4815-4820(1991).

Cell surface antigens of human malignant melanoma: mixed hemadsorption assays for humoral immunity to cultured autologous melanoma cells.

Old L.J.

Proc. Natl. Acad. Sci. U.S.A. 73:3278-3282(1976).

Cell surface antigens of human malignant melanoma. II. Serological typing with immune adherence assays and definition of two new surface antigens.

Shiku H., Takahashi T., Oettgen H.F., Old L.J.

J. Exp. Med. 144:873-881(1976).

Malignant melanoma. Current status of the search for melanoma-specific antigens.

Houghton A.N., Oettgen H.F., Old L.J.

(In book chapter) Immunodermatology. Comprehensive Immunology, Vol 7; Safai B., Good R.A. (eds.); pp.557-576; Springer; Boston; USA (1981).