U2OSHomo sapiens (Human)Cancer cell line

Also known as: U-2 OS, U-2OS, U-2-OS, U2-OS, U20-S, U20S, 2T, U205 (Occasionally.), U-205 (Occasionally.)

🤖 AI SummaryBased on 14 publications

Quick Overview

Human osteosarcoma cell line used in cancer research.

Detailed Summary

The U2OS cell line is a human osteosarcoma-derived cell line widely used in cancer research. It is characterized by its ability to form tumors in vivo and its genetic instability, making it a valuable model for studying osteosarcoma biology. U2OS cells are frequently utilized in studies involving genomic alterations, drug screening, and molecular mechanisms of cancer progression. The cell line has been implicated in research on p53 mutations, MDM2 amplification, and chromosomal abnormalities associated with osteosarcoma. Its use in various experimental models has contributed to understanding the genetic and molecular basis of bone cancers.

Research Applications

Genomic instability studiesDrug screeningMolecular mechanisms of cancer progressionp53 mutation analysisMDM2 amplification studies

Key Characteristics

Genetic instabilityTumor formation in vivoHigh proliferation rateChromosomal abnormalities
Generated on 6/14/2025

Basic Information

Database IDCVCL_0042
SpeciesHomo sapiens (Human)
Tissue SourceBone, tibia[UBERON:UBERON_0000979]

Donor Information

Age15
Age CategoryPediatric
SexFemale
Racecaucasian

Disease Information

DiseaseOsteosarcoma
LineageBone
SubtypeOsteosarcoma
OncoTree CodeOS

DepMap Information

Source TypeATCC
Source IDACH-000364_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimplePPM1Dp.Arg458Ter (c.1372C>T)Heterozygous-from parent cell line U2OS
MutationNone reportedTP53---PubMed=19787792

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
12,13
D10S1248
13,14
D12S391
19,20
D13S317
13
D16S539
11,12
D18S51
12,14
D19S433
15
D1S1656
16,17.3
D21S11
31
D22S1045
15,16
D2S1338
20,24
D2S441
10,14
D3S1358
16
D5S818
8,11
D6S1043
11
D7S820
11,12
D8S1179
12,14
FGA
20
Penta D
9
Penta E
10,13
SE33
19
TH01
6,9.3
TPOX
11,12
vWA
14,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Tissue typing of cells in culture. III. HLA antigens of established human cell lines. Attempts at typing by the mixed hemadsorption technique.

Espmark J.A., Ahlqvist-Roth L., Sarne L., Persson A.

Tissue Antigens 11:279-286(1978).

Absence of HeLa cell contamination in 169 cell lines derived from human tumors.

Fogh J., Wright W.C., Loveless J.D.

J. Natl. Cancer Inst. 58:209-214(1977).

p53 functions as a cell cycle control protein in osteosarcomas.";

Bressac B., Ozturk M., Baker S.J., Vogelstein B., Friend S.H.

Mol. Cell. Biol. 10:5772-5781(1990).

Rearrangement of the p53 gene in human osteogenic sarcomas.";

Masuda H., Miller C., Koeffler H.P., Battifora H.A., Cline M.J.

Proc. Natl. Acad. Sci. U.S.A. 84:7716-7719(1987).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Two established in vitro cell lines from human mesenchymal tumours.";

Ponten J., Saksela E.

Int. J. Cancer 2:434-447(1967).

HLA-A, B, C and DR alloantigen expression on forty-six cultured human tumor cell lines.

Pollack M.S., Heagney S.D., Livingston P.O., Fogh J.

J. Natl. Cancer Inst. 66:1003-1012(1981).

EWS-erg and EWS-Fli1 fusion transcripts in Ewing's sarcoma and primitive neuroectodermal tumors with variant translocations.

Nycum L.M., Emanuel B.S., Evans G.A.

J. Clin. Invest. 94:489-496(1994).

Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma.

Rauscher F.J. 3rd, Emanuel B.S., Rovera G., Barr F.G.

Nat. Genet. 5:230-235(1993).

Immunostaining of the p30/32MIC2 antigen and molecular detection of EWS rearrangements for the diagnosis of Ewing's sarcoma and peripheral neuroectodermal tumor.

Lollini P.-L., Picci P., Bertoni F., Baldini N.

Hum. Pathol. 27:408-416(1996).

Chromosomal alterations in osteosarcoma cell lines revealed by comparative genomic hybridization and multicolor karyotyping.

Poremba C.

Cancer Genet. Cytogenet. 140:145-152(2003).

Expression profiling of t(12;22) positive clear cell sarcoma of soft tissue cell lines reveals characteristic up-regulation of potential new marker genes including ERBB3.

Gabbert H.E., Poremba C.

Cancer Res. 64:3395-3405(2004).

Characterization of osteosarcoma cell lines MG-63, Saos-2 and U-2 OS in comparison to human osteoblasts.

Milz S.

Anticancer Res. 24:3743-3748(2004).

Potential for treatment of liposarcomas with the MDM2 antagonist Nutlin-3A.

Myklebost O.

Int. J. Cancer 121:199-205(2007).

Identification of cryptic microaberrations in osteosarcoma by high-definition oligonucleotide array comparative genomic hybridization.

Squire J.A., Zielenska M.

Cancer Genet. Cytogenet. 179:52-61(2007).

The proteome profile of the human osteosarcoma U2OS cell line.";

Gorgoulis V.G., Tsangaris G.T.

Cancer Genomics Proteomics 5:63-78(2008).

Molecular characterization of commonly used cell lines for bone tumor research: a trans-European EuroBoNet effort.

Buerger H., Aigner T., Gabbert H.E., Poremba C.

Genes Chromosomes Cancer 49:40-51(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Functional characterization of osteosarcoma cell lines provides representative models to study the human disease.

Hogendoorn P.C.W., Llombart-Bosch A., Cleton-Jansen A.-M.

Lab. Invest. 91:1195-1205(2011).

The quantitative proteome of a human cell line.";

Szymborska A., Herzog F., Rinner O., Ellenberg J., Aebersold R.

Mol. Syst. Biol. 7:549-549(2011).

Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins.

Geiger T., Wehner A., Schaab C., Cox J., Mann M.

Mol. Cell. Proteomics 11:M111.014050-M111.014050(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Integrative analysis reveals relationships of genetic and epigenetic alterations in osteosarcoma.

Myklebost O., Meza-Zepeda L.A.

PLoS ONE 7:E48262-E48262(2012).

Gain-of-function mutations of PPM1D/Wip1 impair the p53-dependent G1 checkpoint.

Macurek L.

J. Cell Biol. 201:511-521(2013).

Natural killer cell therapy and aerosol interleukin-2 for the treatment of osteosarcoma lung metastasis.

Wang W.-L., Kleinerman E.S.

Pediatr. Blood Cancer 61:618-626(2014).

Detection of viral proteins in human cells lines by xeno-proteomics: elimination of the last valid excuse for not testing every cellular proteome dataset for viral proteins.

Chernobrovkin A.L., Zubarev R.A.

PLoS ONE 9:E91433-E91433(2014).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A mass spectrometric-derived cell surface protein atlas.";

Aebersold R., Boheler K.R., Zandstra P.W., Wollscheid B.

PLoS ONE 10:E0121314-E0121314(2015).

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

OncoImmunology 3:e954893.1-e954893.12(2014).

Sarcoma cell line screen of oncology drugs and investigational agents identifies patterns associated with gene and microRNA expression.

Harris E., Monks A., Morris J.

Mol. Cancer Ther. 14:2452-2462(2015).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

Sister chromatid exchange and genomic instability in soft tissue sarcomas: potential implications for response to DNA-damaging treatments.

Salawu A., Wright K., Al-Kathiri A., Wyld L., Reed M.W.R., Sisley K.

Sarcoma 2018:3082526.1-3082526.8(2018).