MDA-MB-231Homo sapiens (Human)Cancer cell line

Also known as: MDA_MB_231, MDA-MB 231, MDA.MB.231, MDA MB 231, MDA MB231, MDA Mb231, MDA-MB231, MDAMB-231, MDAMB231, MDA-231, MDA-231P, MDA231, MDA231-BRE, MB231, MD Anderson-Metastatic Breast-231, MD-MBA-231 (Occasionally.), MD-MB-231, MDA-MG-231, MDA-321, MDA-MD-231, MDA-MB-321 (Occasionally.)

🤖 AI SummaryBased on 9 publications

Quick Overview

Human breast cancer cell line used in cancer research and drug development.

Detailed Summary

MDA-MB-231 is a human breast cancer cell line derived from a metastatic lesion. It is widely used in cancer research, particularly for studying triple-negative breast cancer due to its lack of estrogen receptor (ER), progesterone receptor (PR), and HER2 expression. This cell line is valuable for investigating tumor biology, metastasis, and drug response. It has been utilized in various studies involving genomic profiling, proteomics, and functional assays to understand cancer progression and therapeutic resistance.

Research Applications

Cancer researchDrug developmentGenomic profilingProteomicsMetastasis studies

Key Characteristics

Triple-negative breast cancerLack of ER, PR, and HER2 expressionMetastatic originUsed in drug response studies
Generated on 6/14/2025

Basic Information

Database IDCVCL_0062
SpeciesHomo sapiens (Human)
Tissue SourcePleural effusion[UBERON:UBERON_0000175]

Donor Information

Age51
Age CategoryAdult
SexFemale
Racecaucasian
Subtype Featuresbasal_B TNBC

Disease Information

DiseaseBreast adenocarcinoma
LineageBreast
SubtypeInvasive Breast Carcinoma
OncoTree CodeBRCA

DepMap Information

Source TypeATCC
Source IDACH-000768_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
Gene deletionCDKN2A-HomozygousPossiblePubMed=26870271
Gene deletionCDKN2B-Homozygous-PubMed=35933914
MutationSimpleBRAFp.Gly464Val (c.1391G>T)Heterozygous-from parent cell line MDA-MB-231
MutationSimpleKRASp.Gly13Asp (c.38G>A)HeterozygousSomaticfrom parent cell line MDA-MB-231
MutationSimpleTERTc.1-124C>T (c.228C>T) (C228T)UnspecifiedIn promoterfrom parent cell line Hep-G2
MutationSimpleTP53p.Arg280Lys (c.839G>A)Homozygous-from parent cell line MDA-MB-231

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
12,13
D10S1248
14,16
D12S391
17,18
D13S317
13
D16S539
12
D18S51
11,16
D19S433
11,14
D1S1656
15,17
D21S11
30,33.2
D22S1045
16
D2S1338
20,21
D2S441
14,15
D3S1358
16
D5S818
12
D7S820
8,9
D8S1179
13
FGA
22,23
Penta D
11,14
Penta E
11
TH01
7,9.3
TPOX
8,9
vWA
15,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Stringent allele/epitope requirements for MART-1/Melan A immunodominance: implications for peptide-based immunotherapy.

Panelli M.C., Parker K.K., Marincola F.M.

J. Immunol. 161:877-889(1998).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Comparative transcriptional analyses of preclinical models and patient samples reveal MYC and RELA driven expression patterns that define the molecular landscape of IBC.

Viens P., Birnbaum D., Devi G.R., Cristofanilli M., Van Laere S.

NPJ Breast Cancer 8:12.1-12.12(2022).

The cancer SENESCopedia: a delineation of cancer cell senescence.";

Leite de Oliveira R., Wessels L.F.A., Bernards R.

Cell Rep. 36:109441.1-109441.22(2021).

Molecular and cellular characterization of two patient-derived ductal carcinoma in situ (DCIS) cell lines, ETCC-006 and ETCC-010.

Samson J., Derlipanska M., Zaheed O., Dean K.

BMC Cancer 21:790.1-790.20(2021).

The proteomic analysis of breast cell line exosomes reveals disease patterns and potential biomarkers.

Risha Y., Minic Z., Ghobadloo S.M., Berezovski M.V.

Sci. Rep. 10:13572-13572(2020).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Evaluating cell lines as models for metastatic breast cancer through integrative analysis of genomic data.

Andrechek E.R., Chen B.

Nat. Commun. 10:2138.1-2138.12(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Enhancer transcription reveals subtype-specific gene expression programs controlling breast cancer pathogenesis.

Bedford M.T., Shi X.-B., Li W., Barton M.C., Dent S.Y.R., Kraus W.L.

Genome Res. 28:159-170(2018).

Multidimensional phenotyping of breast cancer cell lines to guide preclinical research.

Lakhani S.R.

Breast Cancer Res. Treat. 167:289-301(2018).

Glycoproteins in claudin-low breast cancer cell lines have a unique expression profile.

Yen T.-Y., Bowen S., Yen R., Piryatinska A., Macher B.A., Timpe L.C.

J. Proteome Res. 16:1391-1400(2017).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A map of mobile DNA insertions in the NCI-60 human cancer cell panel.

Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.

Mob. DNA 7:20.1-20.11(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.

Vandesompele J.

Sci. Data 3:160052-160052(2016).

Gene expression profiling and pathway analysis data in MCF-7 and MDA-MB-231 human breast cancer cell lines treated with dioscin.

Aumsuwan P., Khan S.I., Khan I.A., Walker L.A., Dasmahapatra A.K.

Data Brief 8:272-279(2016).

Dataset for the proteomic inventory and quantitative analysis of the breast cancer hypoxic secretome associated with osteotropism.

Cox T.R., Schoof E.M., Gartland A., Erler J.T., Linding R.

Data Brief 5:621-625(2015).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Metabolic profiling of breast cancer: differences in central metabolism between subtypes of breast cancer cell lines.

Kammerer B.

J. Chromatogr. B 1000:95-104(2015).

Molecular portrait of breast-cancer-derived cell lines reveals poor similarity with tumors.

Cifani P., Kirik U., Waldemarson S., James P.

J. Proteome Res. 14:2819-2827(2015).

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

OncoImmunology 3:e954893.1-e954893.12(2014).

The proteomic landscape of triple-negative breast cancer.";

Irie H.Y., Lee S.-I., Blau C.A., Villen J.

Cell Rep. 11:630-644(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.

Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.

PLoS ONE 9:E92047-E92047(2014).

More than apples and oranges -- detecting cancer with a fruit fly's antenna.

Capuano R., Di Natale C.

Sci. Rep. 4:3576-3576(2014).

The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.

Hirshfield K.M., Oltvai Z.N., Vazquez A.

Cancer Metab. 1:20.1-20.13(2013).

Modeling precision treatment of breast cancer.";

Collisson E.A., van 't Veer L.J., Spellman P.T., Gray J.W.

Genome Biol. 14:R110.1-R110.14(2013).

Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes.

Harrell J.C., Roman E., Adamo B., Troester M.A., Perou C.M.

Breast Cancer Res. Treat. 142:237-255(2013).

Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target.

McCormick F., Gray J.W.

Cancer Cell 24:450-465(2013).

Cell surface-specific N-glycan profiling in breast cancer.";

Shi S.-L., Chen C.-Y., Li Y.

PLoS ONE 8:E72704-E72704(2013).

Global proteome analysis of the NCI-60 cell line panel.";

Wilhelm M., Kuster B.

Cell Rep. 4:609-620(2013).

The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.

Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.

Cancer Res. 73:4372-4382(2013).

miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs.

Martens J.W.M.

Breast Cancer Res. 15:R33.1-R33.17(2013).

Molecular characterisation of cell line models for triple-negative breast cancers.

Reis-Filho J.S., Tutt A.

BMC Genomics 13:619.1-619.14(2012).

Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.

Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.

Science 336:1040-1044(2012).

Essential gene profiles in breast, pancreatic, and ovarian cancer cells.

Rottapel R., Neel B.G., Moffat J.

Cancer Discov. 2:172-189(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Identification of cancer cell-line origins using fluorescence image-based phenomic screening.

Yoon C.N., Chang Y.-T.

PLoS ONE 7:E32096-E32096(2012).

Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.

Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.

PLoS ONE 7:E31628-E31628(2012).

JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs.

Kong D.-X., Yamori T.

Bioorg. Med. Chem. 20:1947-1951(2012).

Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.

Ambudkar S.V., Gottesman M.M.

Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).

Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer.

Chavez K.J., Garimella S.V., Lipkowitz S.

Breast Dis. 32:35-48(2010).

Reassessment of estrogen receptor expression in human breast cancer cell lines.

Ford C.H.J., Al-Bader M., Al-Ayadhi B., Francis I.

Anticancer Res. 31:521-527(2011).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Breast cancer cell lines carry cell line-specific genomic alterations that are distinct from aberrations in breast cancer tissues: comparison of the CGH profiles between cancer cell lines and primary cancer tissues.

Yamamoto S., Oka M., Hirano T., Sasaki K.

BMC Cancer 10:15.1-15.10(2010).

Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines.

den Bakker M.A., Foekens J.A., Martens J.W.M., Schutte M.

Breast Cancer Res. Treat. 121:53-64(2010).

Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery.

Pollack J.R.

PLoS ONE 4:E6146-E6146(2009).

DNA fingerprinting of the NCI-60 cell line panel.";

Chanock S.J., Weinstein J.N.

Mol. Cancer Ther. 8:713-724(2009).

Cell membrane proteomic analysis identifies proteins differentially expressed in osteotropic human breast cancer cells.

Clezardin P., De Pauw E.A., Castronovo V.

Neoplasia 10:1014-1020(2008).

The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression.

Petersen O.W., Gray J.W., Bissell M.J.

Mol. Oncol. 1:84-96(2007).

Characterisation of breast cancer cell lines and establishment of a novel isogenic subclone to study migration, invasion and tumourigenicity.

Hughes L., Malone C., Chumsri S., Burger A.M., McDonnell S.

Clin. Exp. Metastasis 25:549-557(2008).

Analysis of p53 mutation status in human cancer cell lines: a paradigm for cell line cross-contamination.

Berglind H., Pawitan Y., Kato S., Ishioka C., Soussi T.

Cancer Biol. Ther. 7:699-708(2008).

High-resolution genomic profiles of breast cancer cell lines assessed by tiling BAC array comparative genomic hybridization.

Ringner M., Hoglund M., Borg A.

Genes Chromosomes Cancer 46:543-558(2007).

A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes.

Johnson M.D., Lippman M.E., Ethier S.P., Gazdar A.F., Gray J.W.

Cancer Cell 10:515-527(2006).

Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.

Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.

Mol. Cancer Ther. 5:2606-2612(2006).

Thirteen new p53 gene mutants identified among 41 human breast cancer cell lines.

Wasielewski M., Elstrodt F., Klijn J.G.M., Berns E.M.J.J., Schutte M.

Breast Cancer Res. Treat. 99:97-101(2006).

Comprehensive copy number profiles of breast cancer cell model genomes.

Shadeo A., Lam W.L.

Breast Cancer Res. 8:R9.1-R9.14(2006).

BRCA1 mutation analysis of 41 human breast cancer cell lines reveals three new deleterious mutants.

van den Ouweland A.M.W., Merajver S.D., Ethier S.P., Schutte M.

Cancer Res. 66:41-45(2006).

Molecular characterization of breast cancer cell lines by a low-density microarray.

Remacle J.

Int. J. Oncol. 27:881-892(2005).

Genes that mediate breast cancer metastasis to lung.";

Viale A.J., Olshen A.B., Gerald W.L., Massague J.

Nature 436:518-524(2005).

p53-defective tumors with a functional apoptosome-mediated pathway: a new therapeutic target.

Tomoda H., Yamori T., Tsuruo T.

J. Natl. Cancer Inst. 97:765-777(2005).

Chemosensitivity profile of cancer cell lines and identification of genes determining chemosensitivity by an integrated bioinformatical approach using cDNA arrays.

Yamori T.

Mol. Cancer Ther. 4:399-412(2005).

HLA class I and II genotype of the NCI-60 cell lines.";

Morse H.C. 3rd, Stroncek D., Marincola F.M.

J. Transl. Med. 3:11.1-11.8(2005).

Evidence that both genetic instability and selection contribute to the accumulation of chromosome alterations in cancer.

Edwards P.A.W., Caldas C.

Carcinogenesis 26:923-930(2005).

The acetyltransferase p300/CBP-associated factor is a p53 target gene in breast tumor cells.

Domann F.E., Futscher B.W.

Neoplasia 6:187-194(2004).

A recurrent chromosome translocation breakpoint in breast and pancreatic cancer cell lines targets the neuregulin/NRG1 gene.

Edwards P.A.W., Chaffanet M.

Genes Chromosomes Cancer 37:333-345(2003).

Identification of microsatellite instability and mismatch repair gene mutations in breast cancer cell lines.

Santibanez-Koref M.F., Schlag P.M., Scherneck S.

Genes Chromosomes Cancer 37:29-35(2003).

Reciprocal translocations in breast tumor cell lines: cloning of a t(3;20) that targets the FHIT gene.

Birnbaum D., Chaffanet M.

Genes Chromosomes Cancer 35:204-218(2002).

Mutations of the BRAF gene in human cancer.";

Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.

Nature 417:949-954(2002).

Early detection of bone metastases in a murine model using fluorescent human breast cancer cells: application to the use of the bisphosphonate zoledronic acid in the treatment of osteolytic lesions.

Clezardin P.

J. Bone Miner. Res. 16:2027-2034(2001).

Assembly of microarrays for genome-wide measurement of DNA copy number.

Pinkel D., Albertson D.G.

Nat. Genet. 29:263-264(2001).

A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro.

Yoneda T., Williams P.J., Hiraga T., Niewolna M., Nishimura R.

J. Bone Miner. Res. 16:1486-1495(2001).

Comparative genomic hybridization analysis of 38 breast cancer cell lines: a basis for interpreting complementary DNA microarray data.

Gooden G.C., Ethier S.P., Kallioniemi A.H., Kallioniemi O.-P.

Cancer Res. 60:4519-4525(2000).

Systematic variation in gene expression patterns in human cancer cell lines.

Botstein D., Brown P.O.

Nat. Genet. 24:227-235(2000).

Altered gene expression in drug-resistant human breast cancer cells.

Wosikowski K., Schuurhuis D.H., Kops G.J.P.L., Saceda M., Bates S.E.

Clin. Cancer Res. 3:2405-2414(1997).

Lack of relationship between CDK activity and G1 cyclin expression in breast cancer cells.

Sweeney K.J., Swarbrick A., Sutherland R.L., Musgrove E.A.

Oncogene 16:2865-2878(1998).

Cell lines from human breast.";

Leibovitz A.

(In book chapter) Atlas of human tumor cell lines; Hay R.J., Park J.-G., Gazdar A.F. (eds.); pp.161-184; Academic Press; New York; USA (1994).

Breast cancer stem cells: tumourspheres and implications for therapy.";

Morrison B.J.

Thesis PhD (2010); Griffith University; Brisbane; Australia.

STR profiling of human cell lines: challenges and possible solutions to the growing problem.

Hart R.P., Furtado M.R.

J. Forensic Res. 2 Suppl. 2:5-5(2011).

Tissue typing of cells in culture. III. HLA antigens of established human cell lines. Attempts at typing by the mixed hemadsorption technique.

Espmark J.A., Ahlqvist-Roth L., Sarne L., Persson A.

Tissue Antigens 11:279-286(1978).

Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization.

Cailleau R.M., Olive M., Cruciger Q.V.J.

In Vitro 14:911-915(1978).

Absence of HeLa cell contamination in 169 cell lines derived from human tumors.

Fogh J., Wright W.C., Loveless J.D.

J. Natl. Cancer Inst. 58:209-214(1977).

The effects of estrogens and antiestrogens on hormone-responsive human breast cancer in long-term tissue culture.

Lippman M.E., Bolan G., Huff K.

Cancer Res. 36:4595-4601(1976).

The effects of glucocorticoids and progesterone on hormone-responsive human breast cancer in long-term tissue culture.

Lippman M.E., Bolan G., Huff K.

Cancer Res. 36:4602-4609(1976).

The effects of androgens and antiandrogens on hormone-responsive human breast cancer in long-term tissue culture.

Lippman M.E., Bolan G., Huff K.

Cancer Res. 36:4610-4618(1976).

Mutations in p53 as potential molecular markers for human breast cancer.

Runnebaum I.B., Nagarajan M., Bowman M., Soto D., Sukumar S.

Proc. Natl. Acad. Sci. U.S.A. 88:10657-10661(1991).

Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.

Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.

Cancer Res. 48:589-601(1988).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Breast tumor cell lines from pleural effusions.";

Cailleau R.M., Young R., Olive M., Reeves W.J. Jr.

J. Natl. Cancer Inst. 53:661-674(1974).

Cell surface antigens of human ovarian and endometrial carcinoma defined by mouse monoclonal antibodies.

Mattes M.J., Cordon-Cardo C., Lewis J.L. Jr., Old L.J., Lloyd K.O.

Proc. Natl. Acad. Sci. U.S.A. 81:568-572(1984).

Distinction of seventy-one cultured human tumor cell lines by polymorphic enzyme analysis.

Wright W.C., Daniels W.P., Fogh J.

J. Natl. Cancer Inst. 66:239-247(1981).

Variations in cell form and cytoskeleton in human breast carcinoma cells in vitro.

Cailleau R.M.

Cancer Res. 40:3118-3129(1980).

Cytogenetic analysis on eight human breast tumor cell lines: high frequencies of 1q, 11q and HeLa-like marker chromosomes.

Satya-Prakash K.L., Pathak S., Hsu T.-C., Olive M., Cailleau R.M.

Cancer Genet. Cytogenet. 3:61-73(1981).

Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins.

Rousset M., Zweibaum A., Fogh J.

Cancer Res. 41:1165-1170(1981).

Characterization of four doxorubicin adapted human breast cancer cell lines with respect to chemotherapeutic drug sensitivity, drug resistance associated membrane proteins and glutathione transferases.

Mannervik B., Bergh J.

Anticancer Res. 13:1425-1430(1993).

Effect of Matrigel on the tumorigenicity of human breast and ovarian carcinoma cell lines.

Mullen P., Ritchie A., Langdon S.P., Miller W.R.

Int. J. Cancer 67:816-820(1996).

Anecdotal Information

  • Used in a study utilising the fruit fly's olfactory system to detect cancer cells (PubMed=24389870)