NamalwaHomo sapiens (Human)Cancer cell line
Also known as: NAMALWA, Namalwa IV, Namalva, NAMALVA, NWA, NK62a, NAMALLA
Quick Overview
Human B cell line used in cancer research and viral studies.
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_0067 |
---|---|
Species | Homo sapiens (Human) |
Donor Information
Age | 3 |
---|---|
Age Category | Pediatric |
Sex | Female |
Disease Information
Disease | EBV-related Burkitt lymphoma |
---|---|
Lineage | Lymphoid |
Subtype | Burkitt Lymphoma |
OncoTree Code | BL |
DepMap Information
Source Type | JCRB |
---|---|
Source ID | ACH-000944_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
MutationSimple | TP53 | p.Arg248Gln (c.743G>A) | Unspecified | Somatic mutation acquired during proliferation | PubMed=20575032 |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
Detection of clonal EBV episomes in lymphoproliferations as a diagnostic tool.
van Dongen J.J.M.
Leukemia 16:1572-1573(2002).
Pan-cancer proteomic map of 949 human cell lines.";
Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.
Cancer Cell 40:835-849.e8(2022).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
Screening human cell lines for viral infections applying RNA-Seq data analysis.
Uphoff C.C., Pommerenke C., Denkmann S.A., Drexler H.G.
PLoS ONE 14:E0210404-E0210404(2019).
Profiling the B/T cell receptor repertoire of lymphocyte derived cell lines.
Yang H.H., Koeffler H.P.
BMC Cancer 18:940.1-940.13(2018).
Screening for 15 pathogenic viruses in human cell lines registered at the JCRB Cell Bank: characterization of in vitro human cells by viral infection.
Satoh M., Shimizu N., Kohara A.
R. Soc. Open Sci. 5:172472-172472(2018).
Characterization of human cancer cell lines by reverse-phase protein arrays.
Liang H.
Cancer Cell 31:225-239(2017).
A landscape of pharmacogenomic interactions in cancer.";
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
Cell 166:740-754(2016).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
OncoImmunology 3:e954893.1-e954893.12(2014).
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).
A comprehensive transcriptional portrait of human cancer cell lines.
Settleman J., Seshagiri S., Zhang Z.-M.
Nat. Biotechnol. 33:306-312(2015).
High-throughput RNA sequencing-based virome analysis of 50 lymphoma cell lines from the Cancer Cell Line Encyclopedia project.
O'Grady T., Baddoo M., Fewell C., Renne R., Flemington E.K.
J. Virol. 89:713-729(2015).
Comprehensive cytogenetic and molecular cytogenetic analysis of 44 Burkitt lymphoma cell lines: secondary chromosomal changes characterization, karyotypic evolution, and comparison with primary samples.
Vettorazzi E., Bokemeyer C., Dierlamm J.
Genes Chromosomes Cancer 53:497-515(2014).
Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics.
Waldmann T.A., Rowe M., Mbulaiteye S.M., Rickinson A.B., Staudt L.M.
Nature 490:116-120(2012).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
Initial characterization of the human central proteome.";
Burckstummer T., Bennett K.L., Superti-Furga G., Colinge J.
BMC Syst. Biol. 5:17.1-17.13(2011).
Detection of EBV, HBV, HCV, HIV-1, HTLV-I and -II, and SMRV in human and other primate cell lines.
Uphoff C.C., Denkmann S.A., Steube K.G., Drexler H.G.
J. Biomed. Biotechnol. 2010:904767.1-904767.23(2010).
A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
Haber D.A.
Cancer Res. 70:2158-2164(2010).
Generation of multidrug resistant lymphoma cell lines stably expressing P-glycoprotein.
Pop I., Pop L., Vitetta E.S., Ghetie M.-A.
Oncol. Rep. 19:889-895(2008).
Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas.
Martinez-Climent J.A.
Blood 109:271-280(2007).
Identification of cell lines with variable numbers of tandem repeat (VNTR) amplified by polymerase chain reaction.
Matsuo Y., Okochi A., Ariyasu T., Iimura E., Ohno T.
Tissue Cult. Res. Commun. 15:211-219(1996).
Sensitivity of the Epstein-Barr virus transformed human lymphoid cell lines to interferon.
Adams A., Strander H., Cantell K.
J. Gen. Virol. 28:207-217(1975).
Differences in the ability of human lymphoblastoid lines to exclude bromodeoxyuridine and in their sensitivity to methyl methanesulfonate and to incorporated [3H]thymidine.
Higgins N.P., Strauss B.S.
Cancer Res. 39:312-320(1979).
Large-scale production and concentration of human lymphoid interferon.
Zoon K.C., Bridgen P.J.
Antimicrob. Agents Chemother. 15:420-427(1979).
Human B-cell interleukin-10: B-cell lines derived from patients with acquired immunodeficiency syndrome and Burkitt's lymphoma constitutively secrete large quantities of interleukin-10.
Benjamin D., Knobloch T.J., Dayton M.A.
Blood 80:1289-1298(1992).
Insertion of SMRV-H viral DNA at the c-myc gene locus of a BL cell line and presence in established cell lines.
Middleton P.G., Miller S., Ross J.A., Steel C.M., Guy K.
Int. J. Cancer 52:451-454(1992).
p53 is frequently mutated in Burkitt's lymphoma cell lines.";
Farrell P.J., Allan G.J., Shanahan F., Vousden K.H., Crook T.
EMBO J. 10:2879-2887(1991).
p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia.
Newcomb E.W., Magrath I.T., Knowles D.M., Dalla-Favera R.
Proc. Natl. Acad. Sci. U.S.A. 88:5413-5417(1991).
Expression of the common acute lymphoblastic leukemia antigen (CALLA) on the surface of individual cells of human lymphoblastoid lines.
Kornacki M., Ritz J., Blattler W.A.
J. Immunol. 136:320-325(1986).
Studies on cell binding and internalization of human lymphoblastoid (Namalva) interferon.
Feinstein S., Traub A., Lazar A., Mizrahi A., Teitz Y.
J. Interferon Res. 5:65-76(1985).
Sensitive, high-resolution chromatin and chromosome mapping in situ: presence and orientation of two closely integrated copies of EBV in a lymphoma line.
Lawrence J.B., Villnave C.A., Singer R.H.
Cell 52:51-61(1988).
Isoenzyme studies in human leukemia-lymphoma cell lines -- 1. carboxylic esterase.
Drexler H.G., Gaedicke G., Minowada J.
Leuk. Res. 9:209-229(1985).
Long term cultivation of Namalva cells for interferon production: stable cytogenetic markers for identification of cells in spite of drastic chromosomal variation.
Wurm F.M., Polastri G.D., Hilfenhaus J., Harth H., Zankl H.
Dev. Biol. Stand. 60:393-403(1985).
The cytogenetics of human B lymphoid malignancy: studies in Burkitt's lymphoma and Epstein-Barr virus-transformed lymphoblastoid cell lines.
Steel C.M., Morten J.E.N., Foster E.
IARC Sci. Publ. 60:265-292(1985).
Expression of B-cell-specific markers in different Burkitt lymphoma subgroups.
Ehlin-Henriksson B., Manneborg-Sandlund A., Klein G.
Int. J. Cancer 39:211-218(1987).
Expression of surface antigens during the cell cycle in different growth phases of American and African Burkitt's lymphoma cell lines.
Sieverts H., Alabaster O., Goldschmidts W., Magrath I.T.
Cancer Res. 46:1182-1188(1986).
Heterogeneity of B-cell growth factor receptor reactivity in healthy donors and in patients with chronic lymphatic leukemia: relationship to B-cell-derived lymphokines.
Benjamin D., Bazar L.S., Wallace B., Jacobson R.J.
Cell. Immunol. 103:394-408(1986).
Isoenzyme studies in human leukemia-lymphoma cell lines -- III. Beta-hexosaminidase (E.C. 3.2.1.30).
Drexler H.G., Gaedicke G., Minowada J.
Leuk. Res. 9:549-559(1985).
Isoenzyme studies in human leukemia-lymphoma cells lines -- II. Acid phosphatase.
Drexler H.G., Gaedicke G., Minowada J.
Leuk. Res. 9:537-548(1985).
Sensitivity of Epstein-Barr virus (EBV) producer and non-producer human lymphoblastoid cell lines to superinfection with EB-virus.
Klein G., Dombos L., Gothoskar B.
Int. J. Cancer 10:44-57(1972).
Radioiodine-labeled antibody test for the detection of membrane antigens associated with Epstein-Barr virus.
Hewetson J.F., Gothoskar B., Klein G.
J. Natl. Cancer Inst. 48:87-94(1972).
Relationship between the sensitivity of EBV-carrying lymphoblastoid lines to superinfection and the inducibility of the resident viral genome.
Klein G., Dombos L.
Int. J. Cancer 11:327-337(1973).
Distinction between Burkitt lymphoma subgroups by monoclonal antibodies: relationships between antigen expression and type of chromosomal translocation.
Ehlin-Henriksson B., Klein G.
Int. J. Cancer 33:459-463(1984).
Immunoglobulin secretion by cell lines derived from African and American undifferentiated lymphomas of Burkitt's and non-Burkitt's type.
Parsons R.G.
J. Immunol. 129:1336-1342(1982).
Truncated mu chain in a Burkitt lymphoma line (P3HR-1) and its fate in various hemapoietic somatic cell hybrids.
Spira G., Koide N., Aman P., Ber R., Klein G.
Immunobiology 162:199-209(1982).
Differences in genetic stability between human cell lines from patients with and without lymphoreticular malignancy.
Povey S., Jeremiah S., Arthur E., Steel M., Klein G.
Ann. Hum. Genet. 44:119-133(1980).
Deletions and rearrangement of CDKN2 in lymphoid malignancy.";
Millar J.L., Catovsky D., Dyer M.J.S.
Blood 85:893-901(1995).
B cell IL-7. Human B cell lines constitutively secrete IL-7 and express IL-7 receptors.
Goodwin R.G.
J. Immunol. 152:4749-4757(1994).
Hemi- or homozygosity: a requirement for some but not other p53 mutant proteins to accumulate and exert a pathogenetic effect.
Magrath I.T.
FASEB J. 7:951-956(1993).
Role of the p53 tumor suppressor gene in cell cycle arrest and radiosensitivity of Burkitt's lymphoma cell lines.
Kohn K.W.
Cancer Res. 53:4776-4780(1993).
Variable IgH chain enhancer activity in Burkitt's lymphomas suggests an additional, direct mechanism of c-myc deregulation.
Jain V.K., Judde J.-G., Max E.E., Magrath I.T.
J. Immunol. 150:5418-5428(1993).
The (2;5)(p23;q35) translocation in cell lines derived from malignant lymphomas: absence of t(2;5) in Hodgkin-analogous cell lines.
Quentmeier H., Drexler H.G.
Leukemia 10:142-149(1996).
IL-12 expression in AIDS-related lymphoma B cell lines.";
Trinchieri G.
J. Immunol. 156:1626-1637(1996).
Role of the p53 tumor suppressor gene in the tumorigenicity of Burkitt's lymphoma cells.
Pike S.E., Gupta G., Magrath I.T., Tosato G.
Cancer Res. 57:2508-2515(1997).
p16/INK4a and p15/INK4b gene methylation and absence of p16/INK4a mRNA and protein expression in Burkitt's lymphoma.
Klangby U., Okan I., Magnusson K.P., Wendland M., Lind P., Wiman K.G.
Blood 91:1680-1687(1998).
Bax is frequently compromised in Burkitt's lymphomas with irreversible resistance to Fas-induced apoptosis.
Magrath I.T., Bhatia K.G.
Cancer Res. 59:696-703(1999).
Frequent microsatellite instability and BAX mutations in T cell acute lymphoblastic leukemia cell lines.
Inoue K., Kohno T., Takakura S., Hayashi Y., Mizoguchi H., Yokota J.
Leuk. Res. 24:255-262(2000).