SK-MEL-2Homo sapiens (Human)Cancer cell line
Also known as: SK-Mel-2, SK-Mel 2, SK-mel-2, SK-MEL2, SK.MEL.2, SK Mel 2, SK MEL 2, SKMEL-2, SKMEL2, SKmel2, SK-ML2, SKml2, SKm12 (Occasionally.)
Quick Overview
Human melanoma cell line with NRAS mutation and MEK dependency
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_0069 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Thigh, skin[UBERON:UBERON_0004262] |
Donor Information
Age | 60 |
---|---|
Age Category | Adult |
Sex | Male |
Race | caucasian |
Disease Information
Disease | Melanoma |
---|---|
Lineage | Skin |
Subtype | Melanoma |
OncoTree Code | MEL |
DepMap Information
Source Type | ATCC |
---|---|
Source ID | ACH-001190_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
MutationSimple | NRAS | p.Gln61Arg (c.182A>G) | Unspecified | - | PubMed=26214590 |
MutationSimple | TERT | c.1-146C>T (c.250C>T) (C250T) | Unspecified | In promoter | PubMed=31068700 |
MutationSimple | TP53 | p.Gly245Ser (c.733G>A) | Unspecified | Somatic mutation acquired during proliferation | PubMed=28445466 |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
Global proteome analysis of the NCI-60 cell line panel.";
Wilhelm M., Kuster B.
Cell Rep. 4:609-620(2013).
Pan-cancer proteomic map of 949 human cell lines.";
Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.
Cancer Cell 40:835-849.e8(2022).
Quantitative proteomics of the Cancer Cell Line Encyclopedia.";
Sellers W.R., Gygi S.P.
Cell 180:387-402.e16(2020).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.
Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.
Nature 568:511-516(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
Characterization of human cancer cell lines by reverse-phase protein arrays.
Liang H.
Cancer Cell 31:225-239(2017).
A map of mobile DNA insertions in the NCI-60 human cancer cell panel.
Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.
Mob. DNA 7:20.1-20.11(2016).
Synergistic effects of eIF4A and MEK inhibitors on proliferation of NRAS-mutant melanoma cell lines.
Kamsu-Kom N., Zhao Q., Desaubry L., Vagner S., Robert C.
Cell Cycle 15:2405-2409(2016).
A landscape of pharmacogenomic interactions in cancer.";
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
Cell 166:740-754(2016).
Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.
Vandesompele J.
Sci. Data 3:160052-160052(2016).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).
Cooperative induction of apoptosis in NRAS mutant melanoma by inhibition of MEK and ROCK.
Beijnen J.H., Altelaar A.F.M., Peeper D.S.
Pigment Cell Melanoma Res. 28:307-317(2015).
A comprehensive transcriptional portrait of human cancer cell lines.
Settleman J., Seshagiri S., Zhang Z.-M.
Nat. Biotechnol. 33:306-312(2015).
High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.
Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.
PLoS ONE 9:E92047-E92047(2014).
Loss of NF1 in cutaneous melanoma is associated with RAS activation and MEK dependence.
Rosen N., Solit D.B.
Cancer Res. 74:2340-2350(2014).
The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.
Hirshfield K.M., Oltvai Z.N., Vazquez A.
Cancer Metab. 1:20.1-20.13(2013).
New human tumor cell lines.";
Fogh J., Trempe G.L.
(In book chapter) Human tumor cells in vitro; Fogh J. (eds.); pp.115-159; Springer; New York; USA (1975).
Membrane associated antigens of human malignant melanoma V: Serological typing of cell lines using antisera from nonhuman primates.
Bruggen J., Sorg C., Macher E.
Cancer Immunol. Immunother. 5:53-62(1978).
One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.
Fogh J., Fogh J.M., Orfeo T.
J. Natl. Cancer Inst. 59:221-226(1977).
Absence of HeLa cell contamination in 169 cell lines derived from human tumors.
Fogh J., Wright W.C., Loveless J.D.
J. Natl. Cancer Inst. 58:209-214(1977).
Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.
Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.
J. Natl. Cancer Inst. 83:757-766(1991).
Cytolytic T-cell clones against an autologous human melanoma: specificity study and definition of three antigens by immunoselection.
Meyer zum Buschenfelde K.-H.
Proc. Natl. Acad. Sci. U.S.A. 86:2804-2808(1989).
Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.
Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.
Cancer Res. 48:589-601(1988).
Polymorphic enzyme analysis of cultured human tumor cell lines.";
Dracopoli N.C., Fogh J.
J. Natl. Cancer Inst. 70:469-476(1983).
Resistance mechanisms determining the in vitro sensitivity to paclitaxel of tumour cells cultured from patients with ovarian cancer.
van Zijl P.L.
Eur. J. Cancer 31A:230-237(1995).
Radiosensitivity of new and established human melanoma cell lines: comparison of [3H]thymidine incorporation and soft agar clonogenic assays.
Finlay G.J., Holdaway K.M., Baguley B.C.
Eur. J. Cancer 30A:1370-1376(1994).
Expression of hyaluronidase by tumor cells induces angiogenesis in vivo.
Markowitz S.D., Willson J.K.V., Sy M.-S.
Proc. Natl. Acad. Sci. U.S.A. 93:7832-7837(1996).
Systematic variation in gene expression patterns in human cancer cell lines.
Botstein D., Brown P.O.
Nat. Genet. 24:227-235(2000).
Mutations of the BRAF gene in human cancer.";
Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.
Nature 417:949-954(2002).
Identification of novel and widely expressed cancer/testis gene isoforms that elicit spontaneous cytotoxic T-lymphocyte reactivity to melanoma.
Hunt D.F., Engelhard V.H., Ross M.M., Slingluff C.L. Jr.
Cancer Res. 64:1157-1163(2004).
Involvement of overexpressed wild-type BRAF in the growth of malignant melanoma cell lines.
Yasui K., Misawa-Furihata A., Kawakami Y., Inazawa J.
Oncogene 23:8796-8804(2004).
HLA class I and II genotype of the NCI-60 cell lines.";
Morse H.C. 3rd, Stroncek D., Marincola F.M.
J. Transl. Med. 3:11.1-11.8(2005).
Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.
Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.
Mol. Cancer Ther. 5:2606-2612(2006).
Analysis of p53 mutation status in human cancer cell lines: a paradigm for cell line cross-contamination.
Berglind H., Pawitan Y., Kato S., Ishioka C., Soussi T.
Cancer Biol. Ther. 7:699-708(2008).
DNA fingerprinting of the NCI-60 cell line panel.";
Chanock S.J., Weinstein J.N.
Mol. Cancer Ther. 8:713-724(2009).
Systems-level modeling of cancer-fibroblast interaction.";
Finn S.P., Loda M., Mahmood U., Ramaswamy S.
PLoS ONE 4:E6888-E6888(2009).
Signatures of mutation and selection in the cancer genome.";
Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
Nature 463:893-898(2010).
Concurrent loss of the PTEN and RB1 tumor suppressors attenuates RAF dependence in melanomas harboring (V600E)BRAF.
Wolchok J.D., Houghton A.N., Solit D.B.
Oncogene 31:446-457(2012).
Therapeutic reactivation of mutant p53 protein by quinazoline derivatives.
Ding A., Baguley B.C.
Invest. New Drugs 30:2035-2045(2012).
Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.
Ambudkar S.V., Gottesman M.M.
Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).
Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.
Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.
PLoS ONE 7:E31628-E31628(2012).
Identification of cancer cell-line origins using fluorescence image-based phenomic screening.
Yoon C.N., Chang Y.-T.
PLoS ONE 7:E32096-E32096(2012).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.
Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.
Science 336:1040-1044(2012).
Functional profiling of live melanoma samples using a novel automated platform.
Schuchter L.M., Clark D.P.
PLoS ONE 7:E52760-E52760(2012).