SK-MEL-2Homo sapiens (Human)Cancer cell line

Also known as: SK-Mel-2, SK-Mel 2, SK-mel-2, SK-MEL2, SK.MEL.2, SK Mel 2, SK MEL 2, SKMEL-2, SKMEL2, SKmel2, SK-ML2, SKml2, SKm12 (Occasionally.)

🤖 AI SummaryBased on 13 publications

Quick Overview

Human melanoma cell line with NRAS mutation and MEK dependency

Detailed Summary

SK-MEL-2 is a human melanoma cell line derived from a metastatic lesion, characterized by a NRAS mutation and dependence on the MEK signaling pathway. It is frequently used in research to study the mechanisms of resistance to RAF inhibitors and the role of MEK in tumor progression. The cell line has been utilized in studies investigating the efficacy of MEK inhibitors in combination with other therapeutic agents, particularly in the context of NRAS-mutant melanomas. Its genetic profile makes it a valuable model for understanding the complexities of MAPK pathway activation and therapeutic targeting.

Research Applications

MEK inhibitor resistance studiesMAPK pathway activation analysisNRAS-mutant melanoma modelingCombination therapy efficacy testing

Key Characteristics

NRAS mutationMEK dependencyMetastatic origin
Generated on 6/14/2025

Basic Information

Database IDCVCL_0069
SpeciesHomo sapiens (Human)
Tissue SourceThigh, skin[UBERON:UBERON_0004262]

Donor Information

Age60
Age CategoryAdult
SexMale
Racecaucasian

Disease Information

DiseaseMelanoma
LineageSkin
SubtypeMelanoma
OncoTree CodeMEL

DepMap Information

Source TypeATCC
Source IDACH-001190_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleNRASp.Gln61Arg (c.182A>G)Unspecified-PubMed=26214590
MutationSimpleTERTc.1-146C>T (c.250C>T) (C250T)UnspecifiedIn promoterPubMed=31068700
MutationSimpleTP53p.Gly245Ser (c.733G>A)UnspecifiedSomatic mutation acquired during proliferationPubMed=28445466

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X,Y
CSF1PO
10,12
D13S317
11
D16S539
8,9
D18S51
15,16
D19S433
12,13,15
D21S11
29,30
D2S1338
21,24
D3S1358
14,16
D5S818
11,12,13
D7S820
11,12
D8S1179
11,12,13
FGA
19,25
Penta D
10,15
Penta E
7,16
TH01
9
TPOX
8,9
vWA
16,17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Global proteome analysis of the NCI-60 cell line panel.";

Wilhelm M., Kuster B.

Cell Rep. 4:609-620(2013).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A map of mobile DNA insertions in the NCI-60 human cancer cell panel.

Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.

Mob. DNA 7:20.1-20.11(2016).

Synergistic effects of eIF4A and MEK inhibitors on proliferation of NRAS-mutant melanoma cell lines.

Kamsu-Kom N., Zhao Q., Desaubry L., Vagner S., Robert C.

Cell Cycle 15:2405-2409(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.

Vandesompele J.

Sci. Data 3:160052-160052(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

Cooperative induction of apoptosis in NRAS mutant melanoma by inhibition of MEK and ROCK.

Beijnen J.H., Altelaar A.F.M., Peeper D.S.

Pigment Cell Melanoma Res. 28:307-317(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.

Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.

PLoS ONE 9:E92047-E92047(2014).

Loss of NF1 in cutaneous melanoma is associated with RAS activation and MEK dependence.

Rosen N., Solit D.B.

Cancer Res. 74:2340-2350(2014).

The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.

Hirshfield K.M., Oltvai Z.N., Vazquez A.

Cancer Metab. 1:20.1-20.13(2013).

New human tumor cell lines.";

Fogh J., Trempe G.L.

(In book chapter) Human tumor cells in vitro; Fogh J. (eds.); pp.115-159; Springer; New York; USA (1975).

Membrane associated antigens of human malignant melanoma V: Serological typing of cell lines using antisera from nonhuman primates.

Bruggen J., Sorg C., Macher E.

Cancer Immunol. Immunother. 5:53-62(1978).

One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.

Fogh J., Fogh J.M., Orfeo T.

J. Natl. Cancer Inst. 59:221-226(1977).

Absence of HeLa cell contamination in 169 cell lines derived from human tumors.

Fogh J., Wright W.C., Loveless J.D.

J. Natl. Cancer Inst. 58:209-214(1977).

Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.

Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.

J. Natl. Cancer Inst. 83:757-766(1991).

Cytolytic T-cell clones against an autologous human melanoma: specificity study and definition of three antigens by immunoselection.

Meyer zum Buschenfelde K.-H.

Proc. Natl. Acad. Sci. U.S.A. 86:2804-2808(1989).

Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.

Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.

Cancer Res. 48:589-601(1988).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Polymorphic enzyme analysis of cultured human tumor cell lines.";

Dracopoli N.C., Fogh J.

J. Natl. Cancer Inst. 70:469-476(1983).

Resistance mechanisms determining the in vitro sensitivity to paclitaxel of tumour cells cultured from patients with ovarian cancer.

van Zijl P.L.

Eur. J. Cancer 31A:230-237(1995).

Radiosensitivity of new and established human melanoma cell lines: comparison of [3H]thymidine incorporation and soft agar clonogenic assays.

Finlay G.J., Holdaway K.M., Baguley B.C.

Eur. J. Cancer 30A:1370-1376(1994).

Expression of hyaluronidase by tumor cells induces angiogenesis in vivo.

Markowitz S.D., Willson J.K.V., Sy M.-S.

Proc. Natl. Acad. Sci. U.S.A. 93:7832-7837(1996).

Systematic variation in gene expression patterns in human cancer cell lines.

Botstein D., Brown P.O.

Nat. Genet. 24:227-235(2000).

Mutations of the BRAF gene in human cancer.";

Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.

Nature 417:949-954(2002).

Identification of novel and widely expressed cancer/testis gene isoforms that elicit spontaneous cytotoxic T-lymphocyte reactivity to melanoma.

Hunt D.F., Engelhard V.H., Ross M.M., Slingluff C.L. Jr.

Cancer Res. 64:1157-1163(2004).

Involvement of overexpressed wild-type BRAF in the growth of malignant melanoma cell lines.

Yasui K., Misawa-Furihata A., Kawakami Y., Inazawa J.

Oncogene 23:8796-8804(2004).

HLA class I and II genotype of the NCI-60 cell lines.";

Morse H.C. 3rd, Stroncek D., Marincola F.M.

J. Transl. Med. 3:11.1-11.8(2005).

Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.

Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.

Mol. Cancer Ther. 5:2606-2612(2006).

Analysis of p53 mutation status in human cancer cell lines: a paradigm for cell line cross-contamination.

Berglind H., Pawitan Y., Kato S., Ishioka C., Soussi T.

Cancer Biol. Ther. 7:699-708(2008).

DNA fingerprinting of the NCI-60 cell line panel.";

Chanock S.J., Weinstein J.N.

Mol. Cancer Ther. 8:713-724(2009).

Systems-level modeling of cancer-fibroblast interaction.";

Finn S.P., Loda M., Mahmood U., Ramaswamy S.

PLoS ONE 4:E6888-E6888(2009).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Concurrent loss of the PTEN and RB1 tumor suppressors attenuates RAF dependence in melanomas harboring (V600E)BRAF.

Wolchok J.D., Houghton A.N., Solit D.B.

Oncogene 31:446-457(2012).

Therapeutic reactivation of mutant p53 protein by quinazoline derivatives.

Ding A., Baguley B.C.

Invest. New Drugs 30:2035-2045(2012).

Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.

Ambudkar S.V., Gottesman M.M.

Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).

Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.

Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.

PLoS ONE 7:E31628-E31628(2012).

Identification of cancer cell-line origins using fluorescence image-based phenomic screening.

Yoon C.N., Chang Y.-T.

PLoS ONE 7:E32096-E32096(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.

Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.

Science 336:1040-1044(2012).

Functional profiling of live melanoma samples using a novel automated platform.

Schuchter L.M., Clark D.P.

PLoS ONE 7:E52760-E52760(2012).

The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.

Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.

Cancer Res. 73:4372-4382(2013).