SNU-16Homo sapiens (Human)Cancer cell line
Also known as: NCI-SNU-16, SNU16
Quick Overview
Gastric cancer cell line with TGF-β1-mediated adhesion properties.
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_0076 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Ascites[UBERON:UBERON_0007795] |
Donor Information
Age | 33 |
---|---|
Age Category | Adult |
Sex | Female |
Race | asian |
Disease Information
Disease | Gastric adenocarcinoma |
---|---|
Lineage | Esophagus/Stomach |
Subtype | Stomach Adenocarcinoma |
OncoTree Code | STAD |
DepMap Information
Source Type | ATCC |
---|---|
Source ID | ACH-000581_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
MutationSimple | TP53 | p.Tyr205Phe (c.614A>T) | Homozygous | - | from parent cell line SNU-16 |
MutationSimple | MSH6 | p.Lys1358fs*2 (c.4065_4066insTTGA) | Heterozygous | - | from parent cell line SNU-16 |
Gene fusion | CD44 | CD44-SLC1A2 | - | - | from parent cell line SNU-16 |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
Pan-cancer proteomic map of 949 human cell lines.";
Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.
Cancer Cell 40:835-849.e8(2022).
Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types.
van 't Veer L.J., Butte A.J., Goldstein T., Sirota M.
Nat. Commun. 10:3574.1-3574.11(2019).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.
Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.
Nature 568:511-516(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
Forty-nine gastric cancer cell lines with integrative genomic profiling for development of c-MET inhibitor.
Kragh M., Horak I.D., Chung H.C., Rha S.Y.
Int. J. Cancer 143:151-159(2018).
Characterization of human cancer cell lines by reverse-phase protein arrays.
Liang H.
Cancer Cell 31:225-239(2017).
A landscape of pharmacogenomic interactions in cancer.";
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
Cell 166:740-754(2016).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
OncoImmunology 3:e954893.1-e954893.12(2014).
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).
A comprehensive transcriptional portrait of human cancer cell lines.
Settleman J., Seshagiri S., Zhang Z.-M.
Nat. Biotechnol. 33:306-312(2015).
Molecular integrative clustering of Asian gastric cell lines revealed two distinct chemosensitivity clusters.
Yang H.H., Lee M.A.
PLoS ONE 9:E111146-E111146(2014).
Integrated exome and transcriptome sequencing reveals ZAK isoform usage in gastric cancer.
Firestein R., Zhang Z.-M.
Nat. Commun. 5:3830.1-3830.8(2014).
Breakpoint analysis of transcriptional and genomic profiles uncovers novel gene fusions spanning multiple human cancer types.
West R.B., Pollack J.R.
PLoS Genet. 9:E1003464-E1003464(2013).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
Haber D.A.
Cancer Res. 70:2158-2164(2010).
Signatures of mutation and selection in the cancer genome.";
Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
Nature 463:893-898(2010).
TGF-beta1 (transforming growth factor-beta1)-mediated adhesion of gastric carcinoma cells involves a decrease in Ras/ERKs (extracellular-signal-regulated kinases) cascade activity dependent on c-Src activity.
Lee J.W., Bang Y.-J.
Biochem. J. 379:141-150(2004).
Mutations in hMSH6 alone are not sufficient to cause the microsatellite instability in colorectal cancer cell lines.
Ku J.-L., Yoon K.-A., Kim D.-Y., Park J.-G.
Eur. J. Cancer 35:1724-1729(1999).
Biology of colorectal and gastric cancer cell lines.";
Park J.-G., Gazdar A.F.
J. Cell. Biochem. Suppl. 24:131-141(1996).
NCI-Navy Medical Oncology Branch cell line data base.";
Carney D.N., Minna J.D., Mulshine J.L.
J. Cell. Biochem. Suppl. 24:32-91(1996).
Characteristics of cell lines established from human gastric carcinoma.
Bang Y.-J., Kim J.-P., Gazdar A.F.
Cancer Res. 50:2773-2780(1990).
Occurrence of p53 gene abnormalities in gastric carcinoma tumors and cell lines.
Lee H.-D., Kim J.-P., Minna J.D., Gazdar A.F.
J. Natl. Cancer Inst. 83:938-943(1991).
Gastric tumor cell lines.";
Sekiguchi M., Suzuki T.
(In book chapter) Atlas of human tumor cell lines; Hay R.J., Park J.-G., Gazdar A.F. (eds.); pp.287-316; Academic Press; New York; USA (1994).