SNU-16Homo sapiens (Human)Cancer cell line

Also known as: NCI-SNU-16, SNU16

🤖 AI SummaryBased on 12 publications

Quick Overview

Gastric cancer cell line with TGF-β1-mediated adhesion properties.

Detailed Summary

SNU-16 is a gastric cancer cell line derived from a Korean patient, known for its unique response to TGF-β1 treatment, which induces anchorage-independent to adherent cell transformation. This cell line has been extensively studied for its role in understanding the molecular mechanisms of cell adhesion and signaling pathways, particularly the involvement of integrin α3 and c-Src kinase in TGF-β1-mediated adhesion. Research on SNU-16 has contributed to the identification of key genes and pathways associated with gastric cancer progression and therapeutic resistance. The cell line is also used to investigate the functional consequences of genetic alterations and their impact on cancer cell behavior.

Research Applications

TGF-β1-mediated adhesion mechanismsIntegrin α3 and c-Src signaling pathwaysGastric cancer progression and metastasisTherapeutic resistance mechanisms

Key Characteristics

Anchorage-independent to adherent cell transformation upon TGF-β1 treatmentUpregulation of integrin α3 subunitDependence on c-Src kinase activity for adhesionRelevance to gastric cancer biology
Generated on 6/14/2025

Basic Information

Database IDCVCL_0076
SpeciesHomo sapiens (Human)
Tissue SourceAscites[UBERON:UBERON_0007795]

Donor Information

Age33
Age CategoryAdult
SexFemale
Raceasian

Disease Information

DiseaseGastric adenocarcinoma
LineageEsophagus/Stomach
SubtypeStomach Adenocarcinoma
OncoTree CodeSTAD

DepMap Information

Source TypeATCC
Source IDACH-000581_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Tyr205Phe (c.614A>T)Homozygous-from parent cell line SNU-16
MutationSimpleMSH6p.Lys1358fs*2 (c.4065_4066insTTGA)Heterozygous-from parent cell line SNU-16
Gene fusionCD44CD44-SLC1A2--from parent cell line SNU-16

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
12
D13S317
8,12
D16S539
11,13
D18S51
14,16
D19S433
13,15.2
D21S11
29,33.2
D2S1338
18,19
D3S1358
15,16
D5S818
10,13
D7S820
12
D8S1179
14
FGA
23
Penta D
9,12
Penta E
11,17
TH01
6,9
TPOX
11
vWA
16
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types.

van 't Veer L.J., Butte A.J., Goldstein T., Sirota M.

Nat. Commun. 10:3574.1-3574.11(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Forty-nine gastric cancer cell lines with integrative genomic profiling for development of c-MET inhibitor.

Kragh M., Horak I.D., Chung H.C., Rha S.Y.

Int. J. Cancer 143:151-159(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

OncoImmunology 3:e954893.1-e954893.12(2014).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Molecular integrative clustering of Asian gastric cell lines revealed two distinct chemosensitivity clusters.

Yang H.H., Lee M.A.

PLoS ONE 9:E111146-E111146(2014).

Integrated exome and transcriptome sequencing reveals ZAK isoform usage in gastric cancer.

Firestein R., Zhang Z.-M.

Nat. Commun. 5:3830.1-3830.8(2014).

Breakpoint analysis of transcriptional and genomic profiles uncovers novel gene fusions spanning multiple human cancer types.

West R.B., Pollack J.R.

PLoS Genet. 9:E1003464-E1003464(2013).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Biology of SNU cell lines.";

Ku J.-L., Park J.-G.

Cancer Res. Treat. 37:1-19(2005).

TGF-beta1 (transforming growth factor-beta1)-mediated adhesion of gastric carcinoma cells involves a decrease in Ras/ERKs (extracellular-signal-regulated kinases) cascade activity dependent on c-Src activity.

Lee J.W., Bang Y.-J.

Biochem. J. 379:141-150(2004).

Mutations in hMSH6 alone are not sufficient to cause the microsatellite instability in colorectal cancer cell lines.

Ku J.-L., Yoon K.-A., Kim D.-Y., Park J.-G.

Eur. J. Cancer 35:1724-1729(1999).

Biology of colorectal and gastric cancer cell lines.";

Park J.-G., Gazdar A.F.

J. Cell. Biochem. Suppl. 24:131-141(1996).

NCI-Navy Medical Oncology Branch cell line data base.";

Carney D.N., Minna J.D., Mulshine J.L.

J. Cell. Biochem. Suppl. 24:32-91(1996).

Characteristics of cell lines established from human gastric carcinoma.

Bang Y.-J., Kim J.-P., Gazdar A.F.

Cancer Res. 50:2773-2780(1990).

Occurrence of p53 gene abnormalities in gastric carcinoma tumors and cell lines.

Lee H.-D., Kim J.-P., Minna J.D., Gazdar A.F.

J. Natl. Cancer Inst. 83:938-943(1991).

Gastric tumor cell lines.";

Sekiguchi M., Suzuki T.

(In book chapter) Atlas of human tumor cell lines; Hay R.J., Park J.-G., Gazdar A.F. (eds.); pp.287-316; Academic Press; New York; USA (1994).

Web Resources