A-673Homo sapiens (Human)Cancer cell line

Also known as: A673, RMS 1598, RMS1598

🤖 AI SummaryBased on 14 publications

A673

Quick Overview

Human rhabdomyosarcoma cell line with specific genetic features.

Detailed Summary

The A673 cell line is derived from a human rhabdomyosarcoma, a type of soft tissue sarcoma. It is characterized by specific genetic alterations, including the presence of the EWS-FLI1 fusion gene, which is commonly associated with Ewing sarcoma. This cell line has been used in studies related to tumor biology, drug sensitivity, and genetic analysis. Research on A673 has contributed to understanding the molecular mechanisms of sarcomas and has been utilized in preclinical studies for evaluating therapeutic agents. The cell line is also noted for its sensitivity to certain chemotherapeutic agents and its utility in studying DNA repair mechanisms and tumor progression.

Research Applications

Tumor biology studiesDrug sensitivity testingGenetic analysisDNA repair mechanismsPreclinical therapeutic evaluation

Key Characteristics

EWS-FLI1 fusion geneSensitivity to chemotherapeutic agentsUtilized in sarcoma research
Generated on 6/14/2025

Basic Information

Database IDCVCL_0080
SpeciesHomo sapiens (Human)
Tissue SourceMuscle[UBERON:UBERON_0001630]

Donor Information

Age15
Age CategoryPediatric
SexFemale
Subtype FeaturesEWS-FLI

Disease Information

DiseaseEwing sarcoma
LineageBone
SubtypeEwing Sarcoma
OncoTree CodeES

DepMap Information

Source TypeATCC
Source IDACH-000052_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
Gene deletionCDKN2A-HomozygousPossiblePubMed=26870271
Gene fusionEWSR1EWSR1-FLI1, EWS-FLI1-Type 1 fusionPubMed=15150091
MutationSimpleBRAFp.Val600Glu (c.1799T>A)Unspecified-PubMed=26214590
MutationSimpleTP53p.Ala119Glnfs*5 (c.353_354dupCA) (c.354_355insCA)Homozygous-from parent cell line A-673

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
11,12
D13S317
8,13
D16S539
11
D18S51
13,16
D19S433
13,14
D21S11
29,30.2
D2S1338
16,21
D3S1358
14
D5S818
11,12
D7S820
10,12
D8S1179
11,13
FGA
19,20
Penta D
12,13
Penta E
10,13
SE33
30.2,32.2
TH01
9.3
TPOX
8
vWA
15,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

SLFN11 is widely expressed in pediatric sarcoma and induces variable sensitization to replicative stress caused by DNA-damaging agents.

Neale G., Tinkle C.L., Federico S.M., Stewart E.A., Shelat A.A.

Mol. Cancer Ther. 20:2151-2165(2021).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Systematic multi-omics profiling of Ewing sarcoma cell lines.";

Orth M.F.

Thesis PhD (2021); Ludwig Maximilians University of Munich; Munich; Germany.

Growth factors produced by sarcoma virus-transformed cells.";

Todaro G.J., De Larco J.E.

Cancer Res. 38:4147-4154(1978).

One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.

Fogh J., Fogh J.M., Orfeo T.

J. Natl. Cancer Inst. 59:221-226(1977).

Human melanoma cells have both nerve growth factor and nerve growth factor-specific receptors on their cell surfaces.

Sherwin S.A., Sliski A.H., Todaro G.J.

Proc. Natl. Acad. Sci. U.S.A. 76:1288-1292(1979).

Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.

Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.

Cancer Res. 48:589-601(1988).

In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors.

Dosik H., Parks W.P.

J. Natl. Cancer Inst. 51:1417-1423(1973).

Defective repair of alkylated DNA by human tumour and SV40-transformed human cell strains.

Lubiniecki A.S., Girardi A.J., Galloway S.M., Bynum G.D.

Nature 288:724-727(1980).

Repair of O6-methylguanine in DNA by demethylation is lacking in Mer- human tumor cell strains.

Yarosh D.B., Foote R.S., Mitra S., Day R.S. 3rd

Carcinogenesis 4:199-205(1983).

Differential expression of the amv gene in human hematopoietic cells.

Aaronson S.A., Wong-Staal F.

Proc. Natl. Acad. Sci. U.S.A. 79:2194-2198(1982).

Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma.

Rauscher F.J. 3rd, Emanuel B.S., Rovera G., Barr F.G.

Nat. Genet. 5:230-235(1993).

Narrow spectrum of infrequent p53 mutations and absence of MDM2 amplification in Ewing tumours.

Salzer-Kuntschik M., Gadner H.

Oncogene 8:2683-2690(1993).

Novel method for the production of multiple colour chromosome paints for use in karyotyping by fluorescence in situ hybridisation.

Roberts I., Wienberg J., Nacheva E., Grace C., Griffin D.K., Coleman N.

Genes Chromosomes Cancer 25:241-250(1999).

Analysis of the expression of cell cycle regulators in Ewing cell lines: EWS-FLI-1 modulates p57KIP2and c-Myc expression.

Weissman B.E., Delattre O.

Oncogene 20:3258-3265(2001).

Mutations of the BRAF gene in human cancer.";

Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.

Nature 417:949-954(2002).

Characterization of the A673 cell line (Ewing tumor) by molecular cytogenetic techniques.

Martinez-Delgado B., Urioste M., Cigudosa J.C., Benitez J.

Cancer Genet. Cytogenet. 141:138-142(2003).

Re: Characterization of the A673 cell line (Ewing tumor) by molecular cytogenetic techniques.

Coleman N., Roberts I.

Cancer Genet. Cytogenet. 148:86-86(2004).

Extreme sensitivity to Yondelis (Trabectedin, ET-743) in low passaged sarcoma cell lines correlates with mutated p53.

Tercero J.C., Piris M.A., Jimeno J.M., Carnero A.

J. Cell. Biochem. 100:339-348(2007).

Levels of p27(kip1) determine Aplidin sensitivity.";

Diaz-Uriarte R., Aracil M., Tercero J.C., Jimeno J.M., Carnero A.

Mol. Cancer Ther. 6:1310-1316(2007).

Molecular characterization of commonly used cell lines for bone tumor research: a trans-European EuroBoNet effort.

Buerger H., Aigner T., Gabbert H.E., Poremba C.

Genes Chromosomes Cancer 49:40-51(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

1q gain and CDT2 overexpression underlie an aggressive and highly proliferative form of Ewing sarcoma.

Debiec-Rychter M., Schaefer K.-L., de Alava E.

Oncogene 31:1287-1298(2012).

Oncogene mutation profiling of pediatric solid tumors reveals significant subsets of embryonal rhabdomyosarcoma and neuroblastoma with mutated genes in growth signaling pathways.

Borsu L., Barr F.G., Ladanyi M.

Clin. Cancer Res. 18:748-757(2012).

Human tumor cell strains defective in the repair of alkylation damage.

Mattern M.R.

Carcinogenesis 1:21-32(1980).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Human rhabdomyosarcoma cell lines for rhabdomyosarcoma research: utility and pitfalls.

Linardic C.M.

Front. Oncol. 3:183.1-183.12(2013).

Characterization and drug resistance patterns of Ewing's sarcoma family tumor cell lines.

Jenabi J., Ji L.-Y., Triche T.J., Lawlor E.R., Reynolds C.P.

PLoS ONE 8:E80060-E80060(2013).

Levels of active tyrosine kinase receptor determine the tumor response to Zalypsis.

Aviles P., Santamaria G., Tercero J.C., Cuevas C., Carnero A.

BMC Cancer 14:281.1-281.10(2014).

The genomic landscape of the Ewing sarcoma family of tumors reveals recurrent STAG2 mutation.

Catchpoole D., Llombart-Bosch A., Waldman T., Khan J.

PLoS Genet. 10:E1004475-E1004475(2014).

Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations.

Zhang J.-H., Delattre O.

Cancer Discov. 4:1342-1353(2014).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

Sarcoma cell line screen of oncology drugs and investigational agents identifies patterns associated with gene and microRNA expression.

Harris E., Monks A., Morris J.

Mol. Cancer Ther. 14:2452-2462(2015).

CXCL14, CXCR7 expression and CXCR4 splice variant ratio associate with survival and metastases in Ewing sarcoma patients.

Schmidt T., Szuhai K., Hogendoorn P.C.W.

Eur. J. Cancer 51:2624-2633(2015).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Exploring the surfaceome of Ewing sarcoma identifies a new and unique therapeutic target.

Zhang J., Rabbitts T.H.

Proc. Natl. Acad. Sci. U.S.A. 113:3603-3608(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

EZH2 inhibition in Ewing sarcoma upregulates GD2 expression for targeting with gene-modified T cells.

Muller I., Walles H., Hartmann W., Rossig C.

Mol. Ther. 27:933-946(2019).

Web Resources