SUP-B15Homo sapiens (Human)Cancer cell line
Also known as: SupB15WT, SupB15W, SupB15, SUPB15, SUPB-15, Sup-B15
Quick Overview
Human B-cell leukemia cell line with BCR-ABL fusion
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_0103 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Bone marrow[UBERON:UBERON_0002371] |
Donor Information
Age | 9 |
---|---|
Age Category | Pediatric |
Sex | Male |
Race | caucasian |
Subtype Features | BCR-ABL1 |
Disease Information
Disease | B-lymphoblastic leukemia/lymphoma with t(9;22)(q34.1;q11.2) |
---|---|
Lineage | Lymphoid |
Subtype | B-Lymphoblastic Leukemia/Lymphoma with t(9;22)(q34.1;q11.2);BCR-ABL1 |
OncoTree Code | BLLBCRABL1 |
DepMap Information
Source Type | ATCC |
---|---|
Source ID | ACH-000059_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
Gene fusion | ABL1 | BCR-ABL1, BCR-ABL | - | BCR exon 1 fused to ABL1 exon 2 | PubMed=10576511, PubMed=10071072, PubMed=8751477 |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
Pan-cancer proteomic map of 949 human cell lines.";
Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.
Cancer Cell 40:835-849.e8(2022).
Integrative multi-omics and drug response profiling of childhood acute lymphoblastic leukemia cell lines.
Lehtio J., Vesterlund M., Jafari R.
Nat. Commun. 13:1691.1-1691.19(2022).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
EZH2 inhibition in Ewing sarcoma upregulates GD2 expression for targeting with gene-modified T cells.
Muller I., Walles H., Hartmann W., Rossig C.
Mol. Ther. 27:933-946(2019).
Screening human cell lines for viral infections applying RNA-Seq data analysis.
Uphoff C.C., Pommerenke C., Denkmann S.A., Drexler H.G.
PLoS ONE 14:E0210404-E0210404(2019).
Profiling the B/T cell receptor repertoire of lymphocyte derived cell lines.
Yang H.H., Koeffler H.P.
BMC Cancer 18:940.1-940.13(2018).
A landscape of pharmacogenomic interactions in cancer.";
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
Cell 166:740-754(2016).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).
Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation.
Bassani-Sternberg M., Pletscher-Frankild S., Jensen L.J., Mann M.
Mol. Cell. Proteomics 14:658-673(2015).
A comprehensive transcriptional portrait of human cancer cell lines.
Settleman J., Seshagiri S., Zhang Z.-M.
Nat. Biotechnol. 33:306-312(2015).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
JAK2 V617F tyrosine kinase mutation in cell lines derived from myeloproliferative disorders.
Quentmeier H., MacLeod R.A.F., Zaborski M., Drexler H.G.
Leukemia 20:471-476(2006).
Gene expression profiling of leukemic cell lines reveals conserved molecular signatures among subtypes with specific genetic aberrations.
Fioretos T.
Leukemia 19:1042-1050(2005).
ABL-BCR expression in BCR-ABL-positive human leukemia cell lines.";
Uphoff C.C., Habig S., Fombonne S., Matsuo Y., Drexler H.G.
Leuk. Res. 23:1055-1060(1999).
Leukemia cell lines: in vitro models for the study of Philadelphia chromosome-positive leukemia.
Drexler H.G., MacLeod R.A.F., Uphoff C.C.
Leuk. Res. 23:207-215(1999).
Sensitivity to Fas-mediated apoptosis in pediatric acute lymphoblastic leukemia is associated with a mutant p53 phenotype and absence of Bcl-2 expression.
Zhou M.-X., Gu L.-B., Yeager A.M., Findley H.W. Jr.
Leukemia 12:1756-1763(1998).
Expression and regulation of Bcl-2, Bcl-xl, and Bax correlate with p53 status and sensitivity to apoptosis in childhood acute lymphoblastic leukemia.
Findley H.W. Jr., Gu L.-B., Yeager A.M., Zhou M.-X.
Blood 89:2986-2993(1997).
Occurrence of TEL-AML1 fusion resulting from (12;21) translocation in human early B-lineage leukemia cell lines.
Janssen J.W.G., Drexler H.G.
Leukemia 11:441-447(1997).
TEL-AML1 translocations with TEL and CDKN2 inactivation in acute lymphoblastic leukemia cell lines.
Giordano L., Gupta R., Fears S., Nucifora G., Rowley J.D., Smith S.D.
Blood 88:785-794(1996).
Overexpression of the MDM2 gene by childhood acute lymphoblastic leukemia cells expressing the wild-type p53 gene.
Zhou M.-X., Yeager A.M., Smith S.D., Findley H.W. Jr.
Blood 85:1608-1614(1995).
Homozygous deletions of the CDKN2 (MTS1/p16ink4) gene in cell lines established from children with acute lymphoblastic leukemia.
Findley H.W. Jr.
Leukemia 9:1159-1161(1995).
Philadelphia chromosome-positive acute lymphoblastic leukemia cell lines without classical breakpoint cluster region rearrangement.
Naumovski L., Morgan R., Hecht F., Link M.P., Glader B.E., Smith S.D.
Cancer Res. 48:2876-2879(1988).
The leukemia-lymphoma cell line factsbook.";
Drexler H.G.
(In book) ISBN 9780122219702; pp.1-733; Academic Press; London; United Kingdom (2001).