SUP-B15Homo sapiens (Human)Cancer cell line

Also known as: SupB15WT, SupB15W, SupB15, SUPB15, SUPB-15, Sup-B15

🤖 AI SummaryBased on 11 publications

Quick Overview

Human B-cell leukemia cell line with BCR-ABL fusion

Detailed Summary

SUP-B15 is a human B-cell leukemia cell line derived from a patient with Philadelphia chromosome-positive acute lymphoblastic leukemia (ALL). It is characterized by the presence of the BCR-ABL fusion gene, which results from the t(9;22)(q34;q11) translocation. This cell line is widely used in research to study the molecular mechanisms of BCR-ABL-mediated leukemogenesis and to evaluate therapeutic strategies targeting the BCR-ABL tyrosine kinase. The cell line exhibits specific genetic and molecular features that make it a valuable model for understanding the pathogenesis of Philadelphia chromosome-positive leukemias.

Research Applications

Study of BCR-ABL fusion gene and its role in leukemogenesisEvaluation of tyrosine kinase inhibitors targeting BCR-ABLInvestigation of molecular mechanisms of Philadelphia chromosome-positive leukemias

Key Characteristics

Presence of BCR-ABL fusion genePhiladelphia chromosome-positiveDerived from B-cell lineage
Generated on 6/14/2025

Basic Information

Database IDCVCL_0103
SpeciesHomo sapiens (Human)
Tissue SourceBone marrow[UBERON:UBERON_0002371]

Donor Information

Age9
Age CategoryPediatric
SexMale
Racecaucasian
Subtype FeaturesBCR-ABL1

Disease Information

DiseaseB-lymphoblastic leukemia/lymphoma with t(9;22)(q34.1;q11.2)
LineageLymphoid
SubtypeB-Lymphoblastic Leukemia/Lymphoma with t(9;22)(q34.1;q11.2);BCR-ABL1
OncoTree CodeBLLBCRABL1

DepMap Information

Source TypeATCC
Source IDACH-000059_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
Gene fusionABL1BCR-ABL1, BCR-ABL-BCR exon 1 fused to ABL1 exon 2PubMed=10576511, PubMed=10071072, PubMed=8751477

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X,Y
CSF1PO
11,12
D13S317
8,14
D16S539
11,12
D18S51
14
D19S433
13,15
D21S11
28,31
D2S1338
20,23
D3S1358
15,16
D5S818
12,13
D7S820
10,11
D8S1179
11,14
FGA
19,20
Penta D
9,12
Penta E
21
TH01
6,9.3
TPOX
8,9
vWA
15,17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Integrative multi-omics and drug response profiling of childhood acute lymphoblastic leukemia cell lines.

Lehtio J., Vesterlund M., Jafari R.

Nat. Commun. 13:1691.1-1691.19(2022).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

EZH2 inhibition in Ewing sarcoma upregulates GD2 expression for targeting with gene-modified T cells.

Muller I., Walles H., Hartmann W., Rossig C.

Mol. Ther. 27:933-946(2019).

Screening human cell lines for viral infections applying RNA-Seq data analysis.

Uphoff C.C., Pommerenke C., Denkmann S.A., Drexler H.G.

PLoS ONE 14:E0210404-E0210404(2019).

Profiling the B/T cell receptor repertoire of lymphocyte derived cell lines.

Yang H.H., Koeffler H.P.

BMC Cancer 18:940.1-940.13(2018).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation.

Bassani-Sternberg M., Pletscher-Frankild S., Jensen L.J., Mann M.

Mol. Cell. Proteomics 14:658-673(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

JAK2 V617F tyrosine kinase mutation in cell lines derived from myeloproliferative disorders.

Quentmeier H., MacLeod R.A.F., Zaborski M., Drexler H.G.

Leukemia 20:471-476(2006).

Gene expression profiling of leukemic cell lines reveals conserved molecular signatures among subtypes with specific genetic aberrations.

Fioretos T.

Leukemia 19:1042-1050(2005).

ABL-BCR expression in BCR-ABL-positive human leukemia cell lines.";

Uphoff C.C., Habig S., Fombonne S., Matsuo Y., Drexler H.G.

Leuk. Res. 23:1055-1060(1999).

Leukemia cell lines: in vitro models for the study of Philadelphia chromosome-positive leukemia.

Drexler H.G., MacLeod R.A.F., Uphoff C.C.

Leuk. Res. 23:207-215(1999).

Sensitivity to Fas-mediated apoptosis in pediatric acute lymphoblastic leukemia is associated with a mutant p53 phenotype and absence of Bcl-2 expression.

Zhou M.-X., Gu L.-B., Yeager A.M., Findley H.W. Jr.

Leukemia 12:1756-1763(1998).

Expression and regulation of Bcl-2, Bcl-xl, and Bax correlate with p53 status and sensitivity to apoptosis in childhood acute lymphoblastic leukemia.

Findley H.W. Jr., Gu L.-B., Yeager A.M., Zhou M.-X.

Blood 89:2986-2993(1997).

Occurrence of TEL-AML1 fusion resulting from (12;21) translocation in human early B-lineage leukemia cell lines.

Janssen J.W.G., Drexler H.G.

Leukemia 11:441-447(1997).

TEL-AML1 translocations with TEL and CDKN2 inactivation in acute lymphoblastic leukemia cell lines.

Giordano L., Gupta R., Fears S., Nucifora G., Rowley J.D., Smith S.D.

Blood 88:785-794(1996).

Overexpression of the MDM2 gene by childhood acute lymphoblastic leukemia cells expressing the wild-type p53 gene.

Zhou M.-X., Yeager A.M., Smith S.D., Findley H.W. Jr.

Blood 85:1608-1614(1995).

Homozygous deletions of the CDKN2 (MTS1/p16ink4) gene in cell lines established from children with acute lymphoblastic leukemia.

Findley H.W. Jr.

Leukemia 9:1159-1161(1995).

Philadelphia chromosome-positive acute lymphoblastic leukemia cell lines without classical breakpoint cluster region rearrangement.

Naumovski L., Morgan R., Hecht F., Link M.P., Glader B.E., Smith S.D.

Cancer Res. 48:2876-2879(1988).

The leukemia-lymphoma cell line factsbook.";

Drexler H.G.

(In book) ISBN 9780122219702; pp.1-733; Academic Press; London; United Kingdom (2001).