DU145Homo sapiens (Human)Cancer cell line

Also known as: DU-145, Du-145, DU 145, DU_145, DU.145, Duke University 145, DU145T

🤖 AI SummaryBased on 10 publications

Quick Overview

Human prostate cancer cell line used in cancer research.

Detailed Summary

The DU145 cell line is a human prostate cancer cell line derived from a metastatic lesion. It is widely used in cancer research for studying tumor biology, drug development, and genetic studies. DU145 cells are androgen-independent, making them a valuable model for research on castration-resistant prostate cancer. The cell line is part of the NCI-60 panel, which includes a variety of cancer types and is extensively characterized for genomic and transcriptomic profiles. Research on DU145 has contributed to understanding mechanisms of drug resistance and cancer progression.

Research Applications

Cancer biologyDrug developmentGenetic studiesDrug resistance mechanismsCancer progression

Key Characteristics

Androgen-independentMetastatic originPart of NCI-60 panelExtensively characterized genomic and transcriptomic profiles
Generated on 6/14/2025

Basic Information

Database IDCVCL_0105
SpeciesHomo sapiens (Human)
Tissue SourceBrain[UBERON:UBERON_0000955]

Donor Information

Age69
Age CategoryAdult
SexMale
Racecaucasian

Disease Information

DiseaseProstate carcinoma
LineageProstate
SubtypeProstate Adenocarcinoma
OncoTree CodePRAD

DepMap Information

Source TypeATCC
Source IDACH-000979_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleCDKN2Ap.Asp84Tyr (c.250G>T) (p.Arg98Leu, c.293G>T)Homozygous-from parent cell line DU145
MutationSimpleRB1p.Lys715Ter (c.2143A>T)Homozygous-from parent cell line DU145
MutationSimpleSTK11p.Lys178fs*86 (c.532_536delAAGCC)Homozygous-from parent cell line DU145
MutationSimpleTP53p.Pro223Leu (c.668C>T)Homozygous-Unknown, Unknown, PubMed=14522906, PubMed=8423216
MutationSimpleTP53p.Val274Phe (c.820G>T)Homozygous-PubMed=30737244, PubMed=29846633

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X,Y
CSF1PO
10,11
D10S1248
12,13
D12S391
17,18,20,21
D13S317
12,13,14
D16S539
11,12,13
D18S51
11,12
D19S433
13
D1S1656
14,15,16,17.3
D21S11
29,30
D22S1045
16
D2S1338
16
D2S441
9,13,14
D3S1358
16
D5S818
10,13
D7S820
7,10,11
D8S1179
13,14
DYS391
10
FGA
21,22,23
Penta D
9,13
Penta E
12,14
TH01
7
TPOX
11
vWA
16,17,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Critical role of O-linked beta-N-acetylglucosamine transferase in prostate cancer invasion, angiogenesis, and metastasis.

Reginato M.J.

J. Biol. Chem. 287:11070-11081(2012).

Genomic characterization of preclinical prostate cancer cell line models.

Figg W.D. Sr.

Int. J. Mol. Sci. 25:6111.1-6111.19(2024).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types.

van 't Veer L.J., Butte A.J., Goldstein T., Sirota M.

Nat. Commun. 10:3574.1-3574.11(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Genetic ancestry analysis reveals misclassification of commonly used cancer cell lines.

Mitra R., Nonn L., Kimbro K.S., Kittles R.A.

Cancer Epidemiol. Biomarkers Prev. 28:1003-1009(2019).

Screening human cell lines for viral infections applying RNA-Seq data analysis.

Uphoff C.C., Pommerenke C., Denkmann S.A., Drexler H.G.

PLoS ONE 14:E0210404-E0210404(2019).

Paclitaxel resistance and the role of miRNAs in prostate cancer cell lines.

Sahin A., Balci F.

World J. Urol. 37:1117-1126(2019).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A map of mobile DNA insertions in the NCI-60 human cancer cell panel.

Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.

Mob. DNA 7:20.1-20.11(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.

Vandesompele J.

Sci. Data 3:160052-160052(2016).

Data for identification of GPI-anchored peptides and omega-sites in cancer cell lines.

Masuishi Y., Kimura Y., Arakawa N., Hirano H.

Data Brief 7:1302-1305(2016).

Identification of glycosylphosphatidylinositol-anchored proteins and omega-sites using TiO2-based affinity purification followed by hydrogen fluoride treatment.

Masuishi Y., Kimura Y., Arakawa N., Hirano H.

J. Proteomics 139:77-83(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.

Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.

PLoS ONE 9:E92047-E92047(2014).

The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.

Hirshfield K.M., Oltvai Z.N., Vazquez A.

Cancer Metab. 1:20.1-20.13(2013).

A rare, human prostate oncocyte cell originates from the prostatic carcinoma (DU145) cell line.

Gilloteaux J., Eze N., Jamison J.M., McGuire K., Summers J.L.

Ultrastruct. Pathol. 37:440-448(2013).

Global proteome analysis of the NCI-60 cell line panel.";

Wilhelm M., Kuster B.

Cell Rep. 4:609-620(2013).

The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.

Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.

Cancer Res. 73:4372-4382(2013).

A novel approach for characterizing microsatellite instability in cancer cells.

Lu Y.-H., Soong T.D., Elemento O.

PLoS ONE 8:E63056-E63056(2013).

Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.

Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.

Science 336:1040-1044(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Identification of cancer cell-line origins using fluorescence image-based phenomic screening.

Yoon C.N., Chang Y.-T.

PLoS ONE 7:E32096-E32096(2012).

Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.

Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.

PLoS ONE 7:E31628-E31628(2012).

JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs.

Kong D.-X., Yamori T.

Bioorg. Med. Chem. 20:1947-1951(2012).

Isolation of a human prostate carcinoma cell line (DU 145).";

Paulson D.F.

Int. J. Cancer 21:274-281(1978).

Expression of the polymorphic human DNA repair gene XRCC1 does not correlate with radiosensitivity in the cells of human head and neck tumor cell lines.

Dunphy E.J., Beckett M.A., Thompson L.H., Weichselbaum R.R.

Radiat. Res. 130:166-170(1992).

Wild-type p53 suppresses growth of human prostate cancer cells containing mutant p53 alleles.

Isaacs W.B., Carter B.S., Ewing C.M.

Cancer Res. 51:4716-4720(1991).

Identification by C-banding of two human prostate tumour cell lines, 1013L and DU 145.

Hartley-Asp B., Billstrom A., Kruse E.

Int. J. Cancer 44:161-164(1989).

Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.

Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.

Cancer Res. 48:589-601(1988).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Human urologic cancer cell lines.";

Williams R.D.

Invest. Urol. 17:359-363(1980).

Distinction of seventy-one cultured human tumor cell lines by polymorphic enzyme analysis.

Wright W.C., Daniels W.P., Fogh J.

J. Natl. Cancer Inst. 66:239-247(1981).

HLA-A, B, C and DR alloantigen expression on forty-six cultured human tumor cell lines.

Pollack M.S., Heagney S.D., Livingston P.O., Fogh J.

J. Natl. Cancer Inst. 66:1003-1012(1981).

p53 oncogene mutations in three human prostate cancer cell lines.";

Carroll A.G., Voeller H.J., Sugars L., Gelmann E.P.

Prostate 23:123-134(1993).

p53 gene alterations in human prostate carcinoma.";

Effert P.J., McCoy R.H., Walther P.J., Liu E.T.-B.

J. Urol. 150:257-261(1993).

Immortalized and tumorigenic adult human prostatic epithelial cell lines: characteristics and applications Part 2. Tumorigenic cell lines.

Webber M.M., Bello D., Quader S.T.A.

Prostate 30:58-64(1997).

Acinar differentiation by non-malignant immortalized human prostatic epithelial cells and its loss by malignant cells.

Webber M.M., Bello D., Kleinman H.K., Hoffman M.P.

Carcinogenesis 18:1225-1231(1997).

Genetic alterations in prostate cancer cell lines detected by comparative genomic hybridization.

Nupponen N.N., Hyytinen E.-R., Kallioniemi A.H., Visakorpi T.

Cancer Genet. Cytogenet. 101:53-57(1998).

Systematic variation in gene expression patterns in human cancer cell lines.

Botstein D., Brown P.O.

Nat. Genet. 24:227-235(2000).

Characterization of chromosomal abnormalities in prostate cancer cell lines by spectral karyotyping.

Isola J.J., Visakorpi T., Bergerheim U.S.R., Larsson C.

Cytogenet. Cell Genet. 87:225-232(1999).

Altered expression of BRCA1, BRCA2, and a newly identified BRCA2 exon 12 deletion variant in malignant human ovarian, prostate, and breast cancer cell lines.

Rauh-Adelmann C., Lau K.-M., Sabeti N., Long J.P., Mok S.C., Ho S.-M.

Mol. Carcinog. 28:236-246(2000).

IPM-FISH, a new M-FISH approach using IRS-PCR painting probes: application to the analysis of seven human prostate cell lines.

Aurich-Costa J., Vannier A., Gregoire E., Nowak F., Cherif D.

Genes Chromosomes Cancer 30:143-160(2001).

The use of multicolor fluorescence technologies in the characterization of prostate carcinoma cell lines: a comparison of multiplex fluorescence in situ hybridization and spectral karyotyping data.

Strefford J.C., Lillington D.M., Young B.D., Oliver R.T.D.

Cancer Genet. Cytogenet. 124:112-121(2001).

Characterization of a novel topoisomerase I mutation from a camptothecin-resistant human prostate cancer cell line.

Gioffre C., Zhang H.-L., Chatterjee D., Pantazis P., Pommier Y.

Cancer Res. 61:1964-1969(2001).

Widely used prostate carcinoma cell lines share common origins.";

van Bokhoven A., Varella-Garcia M., Korch C.T., Hessels D., Miller G.J.

Prostate 47:36-51(2001).

Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures.

Wolf E., Gabius H.-J.

J. Cancer Res. Clin. Oncol. 127:375-386(2001).

Short tandem repeat profiling provides an international reference standard for human cell lines.

Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.

Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001).

Genome-wide screening for complete genetic loss in prostate cancer by comparative hybridization onto cDNA microarrays.

Crossland S., Stratton M.R., Wooster R., Campbell C., Cooper C.S.

Oncogene 22:1247-1252(2003).

Apoptotic susceptibility of cancer cells selected for camptothecin resistance: gene expression profiling, functional analysis, and molecular interaction mapping.

Liu E.T.-B., Kirsch I.R., Urasaki Y., Pommier Y., Weinstein J.N.

Cancer Res. 63:1000-1011(2003).

Human prostate cancer cell lines.";

Russell P.J., Kingsley E.A.

Methods Mol. Med. 81:21-39(2003).

Molecular characterization of human prostate carcinoma cell lines.";

Smith E.E., Miller H.L., Nordeen S.K., Miller G.J., Lucia M.S.

Prostate 57:205-225(2003).

Genome-wide characterization of gene expression variations and DNA copy number changes in prostate cancer cell lines.

Brooks J.D.

Prostate 63:187-197(2005).

HLA class I and II genotype of the NCI-60 cell lines.";

Morse H.C. 3rd, Stroncek D., Marincola F.M.

J. Transl. Med. 3:11.1-11.8(2005).

Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.

Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.

Mol. Cancer Ther. 5:2606-2612(2006).

Profiling and authentication of human cell lines using short tandem repeat (STR) loci: report from the National Cell Bank of Iran.

Azari S., Ahmadi N., Jeddi-Tehrani M., Shokri F.

Biologicals 35:195-202(2007).

The establishment of two paclitaxel-resistant prostate cancer cell lines and the mechanisms of paclitaxel resistance with two cell lines.

Namiki M.

Prostate 67:955-967(2007).

DNA fingerprinting of the NCI-60 cell line panel.";

Chanock S.J., Weinstein J.N.

Mol. Cancer Ther. 8:713-724(2009).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.

Ambudkar S.V., Gottesman M.M.

Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).