A-172Homo sapiens (Human)Cancer cell line

Also known as: A172, A 172, A-172 MG, A-172MG

🤖 AI SummaryBased on 11 publications

A172

Quick Overview

Human glioblastoma cell line used in cancer research.

Detailed Summary

The A172 cell line is a human glioblastoma cell line derived from a glioblastoma multiforme tumor. It is widely used in cancer research for studying tumor biology, drug development, and genetic characteristics. A172 cells are known for their mesenchymal properties and are often utilized in studies related to glioblastoma progression and therapeutic responses. The cell line has been characterized for its growth patterns, surface markers, and gene expression profiles, making it a valuable model for investigating glioblastoma mechanisms and potential treatments.

Research Applications

Cancer researchDrug developmentGenetic studiesTumor biology

Key Characteristics

Mesenchymal markersHigh proliferation rateExpression of VEGF and FGF2(b)Known for glioblastoma studies
Generated on 6/15/2025

Basic Information

Database IDCVCL_0131
SpeciesHomo sapiens (Human)
Tissue SourceBrain[UBERON:UBERON_0000955]

Donor Information

Age53
Age CategoryAdult
SexMale

Disease Information

DiseaseGlioblastoma
LineageCNS/Brain
SubtypeGlioblastoma
OncoTree CodeGB

DepMap Information

Source TypeATCC
Source IDACH-000558_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
Gene deletionPTEN-Hemizygous-Wistar
Gene fusionABL1ABL1-CBFB--from parent cell line A-172
MutationNone reportedIDH1---PubMed=19435942
MutationNone reportedTP53---PubMed=19787792

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X,Y
CSF1PO
9,11
D10S1248
15
D12S391
22
D13S317
11
D16S539
11
D18S51
12,13
D19S433
12,15.2
D1S1656
12,14
D21S11
27,32
D22S1045
16
D2S1338
20,21
D2S441
10,11
D3S1358
14,18
D5S818
11,12
D6S1043
13,18
D7S820
11
D8S1179
13,14
DYS391
11
FGA
20,22
Penta D
9,13
Penta E
5,10
TH01
6,9.3
TPOX
8,11
vWA
17,20
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

DNA fingerprinting of glioma cell lines and considerations on similarity measurements.

Hamou M.-F., Delorenzi M., Hegi M.E.

Neuro-oncol. 14:701-711(2012).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

lncRNA TUG1 inhibits the cancer stem cell-like properties of temozolomide-resistant glioma cells by interacting with EZH2.

Long J.

Mol. Med. Rep. 24:533.1-533.10(2021).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Characteristics of A172 and T98G cell lines.";

Samoylovich M.P.

Tsitologiia 58:349-355(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Breakpoint analysis of transcriptional and genomic profiles uncovers novel gene fusions spanning multiple human cancer types.

West R.B., Pollack J.R.

PLoS Genet. 9:E1003464-E1003464(2013).

Brain tumors.";

Ali-Osman F.

(In book chapter) Human cell culture. Vol. 2. Cancer cell lines part 2; Masters J.R.W., Palsson B.O. (eds.); pp.167-184; Kluwer Academic Publishers; New York; USA (1999).

Human glioma cell lines.";

Nister M., Westermark B.

(In book chapter) Atlas of human tumor cell lines; Hay R.J., Park J.-G., Gazdar A.F. (eds.); pp.17-42; Academic Press; New York; USA (1994).

Tissue typing of cells in culture. III. HLA antigens of established human cell lines. Attempts at typing by the mixed hemadsorption technique.

Espmark J.A., Ahlqvist-Roth L., Sarne L., Persson A.

Tissue Antigens 11:279-286(1978).

Growth factors produced by sarcoma virus-transformed cells.";

Todaro G.J., De Larco J.E.

Cancer Res. 38:4147-4154(1978).

Human brain tumour cell strains with deficient host-cell reactivation of N-methyl-N'-nitro-N-nitrosoguanidine-damaged adenovirus 5.

Day R.S. 3rd, Ziolkowski C.H.J.

Nature 279:797-799(1979).

Absence of HeLa cell contamination in 169 cell lines derived from human tumors.

Fogh J., Wright W.C., Loveless J.D.

J. Natl. Cancer Inst. 58:209-214(1977).

Platelet-derived growth factor (PDGF) receptor activation in cell transformation and human malignancy.

Fleming T.P., Matsui T., Aaronson S.A.

Exp. Gerontol. 27:523-532(1992).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

DNA content and chromosomes in permanent cultured cell lines derived from malignant human gliomas.

Bigner S.H., Bjerkvig R., Laerum O.D., Muhlbaier L.H., Bigner D.D.

Anal. Quant. Cytol. Histol. 9:435-444(1987).

Polysomy of chromosome 7 is correlated with overexpression of the erbB oncogene in human glioblastoma cell lines.

Henn W., Blin N., Zang K.-D.

Hum. Genet. 74:104-106(1986).

In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors.

Dosik H., Parks W.P.

J. Natl. Cancer Inst. 51:1417-1423(1973).

Polymorphic enzyme analysis of cultured human tumor cell lines.";

Dracopoli N.C., Fogh J.

J. Natl. Cancer Inst. 70:469-476(1983).

Defective repair of alkylated DNA by human tumour and SV40-transformed human cell strains.

Lubiniecki A.S., Girardi A.J., Galloway S.M., Bynum G.D.

Nature 288:724-727(1980).

Heterogeneity of genotypic and phenotypic characteristics of fifteen permanent cell lines derived from human gliomas.

Ruoslahti E., Herschman H.R., Eng L.F., Wikstrand C.J.

J. Neuropathol. Exp. Neurol. 40:201-229(1981).

Chromosomal composition of four permanent cultured cell lines derived from human gliomas.

Bigner S.H., Mark J., Bigner D.D.

Cancer Genet. Cytogenet. 10:335-349(1983).

Repair of O6-methylguanine in DNA by demethylation is lacking in Mer- human tumor cell strains.

Yarosh D.B., Foote R.S., Mitra S., Day R.S. 3rd

Carcinogenesis 4:199-205(1983).

Differential expression of the amv gene in human hematopoietic cells.

Aaronson S.A., Wong-Staal F.

Proc. Natl. Acad. Sci. U.S.A. 79:2194-2198(1982).

Breakpoint junctions of chromosome 9p deletions in two human glioma cell lines.

Pomykala H.M., Bohlander S.K., Broeker P.L., Olopade O.I., Diaz M.O.

Mol. Cell. Biol. 14:7604-7610(1994).

Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers.

Frye C., Hu R., Swedlund B., Teng D.H.-F., Tavtigian S.V.

Nat. Genet. 15:356-362(1997).

Functional expression of bombesin receptor in most adult and pediatric human glioblastoma cell lines; role in mitogenesis and in stimulating the mitogen-activated protein kinase pathway.

Sharif T.R., Luo W., Sharif M.

Mol. Cell. Endocrinol. 130:119-130(1997).

Screening the p53 status of human cell lines using a yeast functional assay.

Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.

Mol. Carcinog. 19:243-253(1997).

Predicting chemoresistance in human malignant glioma cells: the role of molecular genetic analyses.

Krajewski S., Reed J.C., von Deimling A., Dichgans J.

Int. J. Cancer 79:640-644(1998).

Overexpression of protein kinase C epsilon in astroglial brain tumor derived cell lines and primary tumor samples.

Sharif T.R., Sharif M.

Int. J. Oncol. 15:237-243(1999).

Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines.

Van Meir E.G.

Brain Pathol. 9:469-479(1999).

Oncogenic epidermal growth factor receptor mutants with tandem duplication: gene structure and effects on receptor function.

Ciesielski M.J., Fenstermaker R.A.

Oncogene 19:810-820(2000).

Detection of multiple gene amplifications in glioblastoma multiforme using array-based comparative genomic hybridization.

Hui A.B.-Y., Lo K.-W., Yin X.-L., Poon W.-S., Ng H.-K.

Lab. Invest. 81:717-723(2001).

CP-31398, a novel p53-stabilizing agent, induces p53-dependent and p53-independent glioma cell death.

Wischhusen J., Naumann U., Ohgaki H., Rastinejad F., Weller M.

Oncogene 22:8233-8245(2003).

P-glycoprotein and multidrug resistance-associated protein mediate specific patterns of multidrug resistance in malignant glioma cell lines, but not in primary glioma cells.

Bahr O., Rieger J., Duffner F., Meyermann R., Weller M., Wick W.

Brain Pathol. 13:482-494(2003).

p53-defective tumors with a functional apoptosome-mediated pathway: a new therapeutic target.

Tomoda H., Yamori T., Tsuruo T.

J. Natl. Cancer Inst. 97:765-777(2005).

Overexpressed Skp2 within 5p amplification detected by array-based comparative genomic hybridization is associated with poor prognosis of glioblastomas.

Aoyagi M., Ohno K., Imoto I., Inazawa J.

Cancer Sci. 96:676-683(2005).

Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines.

Fine H.A.

Cancer Cell 9:391-403(2006).

Profiling and authentication of human cell lines using short tandem repeat (STR) loci: report from the National Cell Bank of Iran.

Azari S., Ahmadi N., Jeddi-Tehrani M., Shokri F.

Biologicals 35:195-202(2007).

Mechanisms of resistance of human glioma cells to Apo2 ligand/TNF-related apoptosis-inducing ligand.

Rieger J., Frank B., Weller M., Wick W.

Cell. Physiol. Biochem. 20:23-34(2007).

Molecular and phenotypic characterisation of paediatric glioma cell lines as models for preclinical drug development.

Jones C.

PLoS ONE 4:E5209-E5209(2009).

IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas.

Jones D.T.W., Collins V.P.

Neuro-oncol. 11:341-347(2009).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

MAP kinase-interacting kinase 1 regulates SMAD2-dependent TGF-beta signaling pathway in human glioblastoma.

Moncayo G., Hemmings B.A.

Cancer Res. 71:2392-2402(2011).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Web Resources