A-375Homo sapiens (Human)Cancer cell line

Also known as: A 375, A375, A375-MEL, A375-mel, A375mel, 375, A-735 (Occasionally.)

🤖 AI SummaryBased on 9 publications

Quick Overview

Human melanoma cell line used in cancer research and drug development.

Detailed Summary

The A-375 cell line is a human melanoma cell line derived from a primary tumor. It is widely used in cancer research for studying melanoma biology, drug screening, and therapeutic development. This cell line has been characterized in multiple studies for its genetic and molecular profiles, including mutations and gene expression patterns. Research on A-375 has contributed to understanding the mechanisms of melanoma progression and response to targeted therapies. It is also utilized in studies involving immune responses and tumor microenvironment interactions.

Research Applications

Cancer researchDrug developmentMelanoma biologyTherapeutic development

Key Characteristics

Human melanoma cell lineUsed in drug screeningCharacterized for genetic and molecular profiles
Generated on 6/15/2025

Basic Information

Database IDCVCL_0132
SpeciesHomo sapiens (Human)
Tissue SourceLeg, skin[UBERON:UBERON_0001511]

Donor Information

Age54
Age CategoryAdult
SexFemale

Disease Information

DiseaseAmelanotic melanoma
LineageSkin
SubtypeMelanoma
OncoTree CodeMEL

DepMap Information

Source TypeATCC
Source IDACH-000219_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleBRAFp.Val600Glu (c.1799T>A)Unspecified-PubMed=26214590
MutationSimpleCDKN2Ap.Glu61Ter (c.181G>T) (p.Gly75Val, c.224G>T)Homozygous-from parent cell line A-375
MutationSimpleCDKN2Ap.Glu69Ter (c.205G>T) (p.Gly83Val, c.248G>T)Homozygous-from parent cell line A-375
MutationSimpleTERTc.1-146C>T (c.250C>T) (C250T)UnspecifiedIn promoterPubMed=31068700

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
11,12
D10S1248
16
D12S391
18,21
D13S317
11,14
D16S539
9
D18S51
12,17
D19S433
13,14.2
D1S1656
16,17.3
D21S11
29,30
D22S1045
16
D2S1338
16,24
D2S441
11
D3S1358
15,17
D5S818
12
D7S820
9
D8S1179
11,14
FGA
23
Penta D
9,15
Penta E
10,12
TH01
8
TPOX
8,10
vWA
16,17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Proteomic changes in the monolayer and spheroid melanoma cell models of acquired resistance to BRAF and MEK1/2 inhibitors.

Shapiro P.

ACS Omega 7:3293-3311(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Concomitant BCORL1 and BRAF mutations in vemurafenib-resistant melanoma cells.

Piazza R., Gambacorti-Passerini C.

Neoplasia 20:467-477(2018).

Genetic alterations in main candidate genes during melanoma progression.

Manca A., Botti G., Ascierto P.A., Lissia A., Cossu A., Palmieri G.

Oncotarget 9:8531-8541(2018).

Signatures of protein expression revealed by secretome analyses of cancer associated fibroblasts and melanoma cell lines.

Zelanis A.

J. Proteomics 174:1-8(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Combinatorial drug screening and molecular profiling reveal diverse mechanisms of intrinsic and adaptive resistance to BRAF inhibition in V600E BRAF mutant melanomas.

Petricoin E.F. 3rd, Gioeli D., Weber M.J.

Oncotarget 7:2734-2753(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Systems analysis of adaptive responses to MAP kinase pathway blockade in BRAF mutant melanoma.

Slingluff C.L. Jr., Weber M.J., Mackey A.J., Gioeli D., Bekiranov S.

PLoS ONE 10:E0138210-E0138210(2015).

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

OncoImmunology 3:e954893.1-e954893.12(2014).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

Membrane associated antigens of human malignant melanoma V: Serological typing of cell lines using antisera from nonhuman primates.

Bruggen J., Sorg C., Macher E.

Cancer Immunol. Immunother. 5:53-62(1978).

Expression of surface antigens and its relation to parameters of malignancy in human malignant melanoma.

Bruggen J., Macher E., Sorg C.

Cancer Immunol. Immunother. 10:121-127(1981).

Tissue typing of cells in culture. III. HLA antigens of established human cell lines. Attempts at typing by the mixed hemadsorption technique.

Espmark J.A., Ahlqvist-Roth L., Sarne L., Persson A.

Tissue Antigens 11:279-286(1978).

Nerve growth factor receptors on human melanoma cells in culture.";

Fabricant R.N., De Larco J.E., Todaro G.J.

Proc. Natl. Acad. Sci. U.S.A. 74:565-569(1977).

One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.

Fogh J., Fogh J.M., Orfeo T.

J. Natl. Cancer Inst. 59:221-226(1977).

Human melanoma cells have both nerve growth factor and nerve growth factor-specific receptors on their cell surfaces.

Sherwin S.A., Sliski A.H., Todaro G.J.

Proc. Natl. Acad. Sci. U.S.A. 76:1288-1292(1979).

Absence of HeLa cell contamination in 169 cell lines derived from human tumors.

Fogh J., Wright W.C., Loveless J.D.

J. Natl. Cancer Inst. 58:209-214(1977).

Comparative study of two human melanoma cell lines with different sensitivities to mustine and cisplatin.

Hansson J., Fichtinger-Schepman A.M.J., Edgren M.R., Ringborg U.

Eur. J. Cancer 27:1039-1045(1991).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors.

Dosik H., Parks W.P.

J. Natl. Cancer Inst. 51:1417-1423(1973).

Polymorphic enzyme analysis of cultured human tumor cell lines.";

Dracopoli N.C., Fogh J.

J. Natl. Cancer Inst. 70:469-476(1983).

Relationship between karyotype of tissue culture lines and tumorigenicity in nude mice.

Gershwin M.E., Lentz D., Owens R.B.

Exp. Cell Biol. 52:361-370(1984).

A human melanoma line heterogeneous with respect to metastatic capacity in athymic nude mice.

Kozlowski J.M., Hart I.R., Fidler I.J., Hanna N.

J. Natl. Cancer Inst. 72:913-917(1984).

Differential expression of the amv gene in human hematopoietic cells.

Aaronson S.A., Wong-Staal F.

Proc. Natl. Acad. Sci. U.S.A. 79:2194-2198(1982).

Stringent allele/epitope requirements for MART-1/Melan A immunodominance: implications for peptide-based immunotherapy.

Panelli M.C., Parker K.K., Marincola F.M.

J. Immunol. 161:877-889(1998).

Abnormalities in the p34cdc2-related PITSLRE protein kinase gene complex (CDC2L) on chromosome band 1p36 in melanoma.

Lahti J.M., Kidd V.J.

Cancer Genet. Cytogenet. 108:91-99(1999).

Fas-induced apoptosis in human malignant melanoma cell lines is associated with the activation of the p34(cdc2)-related PITSLRE protein kinases.

Ariza M.E., Broome-Powell M., Lahti J.M., Kidd V.J., Nelson M.A.

J. Biol. Chem. 274:28505-28513(1999).

Mutations of the BRAF gene in human cancer.";

Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.

Nature 417:949-954(2002).

Identification of novel and widely expressed cancer/testis gene isoforms that elicit spontaneous cytotoxic T-lymphocyte reactivity to melanoma.

Hunt D.F., Engelhard V.H., Ross M.M., Slingluff C.L. Jr.

Cancer Res. 64:1157-1163(2004).

Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma.

Tsao H., Goel V., Wu H., Yang G., Haluska F.G.

J. Invest. Dermatol. 122:337-341(2004).

Involvement of overexpressed wild-type BRAF in the growth of malignant melanoma cell lines.

Yasui K., Misawa-Furihata A., Kawakami Y., Inazawa J.

Oncogene 23:8796-8804(2004).

Lack of extracellular signal-regulated kinase mitogen-activated protein kinase signaling shows a new type of melanoma.

Sharpless N.E.

Cancer Res. 67:1502-1512(2007).

Conservation of genetic alterations in recurrent melanoma supports the melanoma stem cell hypothesis.

Karai L., Nickoloff B.J., Maio M., Selleri S., Marincola F.M., Wang E.

Cancer Res. 68:122-131(2008).

Systems-level modeling of cancer-fibroblast interaction.";

Finn S.P., Loda M., Mahmood U., Ramaswamy S.

PLoS ONE 4:E6888-E6888(2009).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Integrative genomics identifies molecular alterations that challenge the linear model of melanoma progression.

Ostrer H., Osman I.

Cancer Res. 71:2561-2571(2011).

Induction of arginosuccinate synthetase (ASS) expression affects the antiproliferative activity of arginine deiminase (ADI) in melanoma cells.

Palmieri G.

Oncol. Rep. 25:1495-1502(2011).

Changes in the gene expression profile of A375 human melanoma cells induced by overexpression of multifunctional pigment epithelium-derived factor.

Volpert O.V., Jimenez B.

Melanoma Res. 21:285-297(2011).

Characterization of human melanoma cell lines and melanocytes by proteome analysis.

Elia G., Marincola F.M., McCubrey J.A., Libra M., Travali S., Kane M.

Cell Cycle 10:2924-2936(2011).

Investigating the role of melanin in UVA/UVB- and hydrogen peroxide-induced cellular and mitochondrial ROS production and mitochondrial DNA damage in human melanoma cells.

Swalwell H., Latimer J., Haywood R.M., Birch-Machin M.A.

Free Radic. Biol. Med. 52:626-634(2012).

Human tumor cell strains defective in the repair of alkylation damage.

Mattern M.R.

Carcinogenesis 1:21-32(1980).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Sensitivity to the MEK inhibitor E6201 in melanoma cells is associated with mutant BRAF and wildtype PTEN status.

Nomoto K., Pollock P.M.

Mol. Cancer 11:75.1-75.15(2012).

Metastatic melanoma cell lines do not secrete IL-1beta but promote IL-1beta production from macrophages.

Cheng P., Dummer R., Kerl K., Contassot E., French L.E.

J. Dermatol. Sci. 74:167-169(2014).

The RAC1 P29S hotspot mutation in melanoma confers resistance to pharmacological inhibition of RAF.

Davies M.A., Mills G.B., Chin L.

Cancer Res. 74:4845-4852(2014).