A-375Homo sapiens (Human)Cancer cell line
Also known as: A 375, A375, A375-MEL, A375-mel, A375mel, 375, A-735 (Occasionally.)
Quick Overview
Human melanoma cell line used in cancer research and drug development.
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_0132 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Leg, skin[UBERON:UBERON_0001511] |
Donor Information
Age | 54 |
---|---|
Age Category | Adult |
Sex | Female |
Disease Information
Disease | Amelanotic melanoma |
---|---|
Lineage | Skin |
Subtype | Melanoma |
OncoTree Code | MEL |
DepMap Information
Source Type | ATCC |
---|---|
Source ID | ACH-000219_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
MutationSimple | BRAF | p.Val600Glu (c.1799T>A) | Unspecified | - | PubMed=26214590 |
MutationSimple | CDKN2A | p.Glu61Ter (c.181G>T) (p.Gly75Val, c.224G>T) | Homozygous | - | from parent cell line A-375 |
MutationSimple | CDKN2A | p.Glu69Ter (c.205G>T) (p.Gly83Val, c.248G>T) | Homozygous | - | from parent cell line A-375 |
MutationSimple | TERT | c.1-146C>T (c.250C>T) (C250T) | Unspecified | In promoter | PubMed=31068700 |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
A comprehensive transcriptional portrait of human cancer cell lines.
Settleman J., Seshagiri S., Zhang Z.-M.
Nat. Biotechnol. 33:306-312(2015).
Pan-cancer proteomic map of 949 human cell lines.";
Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.
Cancer Cell 40:835-849.e8(2022).
Proteomic changes in the monolayer and spheroid melanoma cell models of acquired resistance to BRAF and MEK1/2 inhibitors.
Shapiro P.
ACS Omega 7:3293-3311(2022).
Quantitative proteomics of the Cancer Cell Line Encyclopedia.";
Sellers W.R., Gygi S.P.
Cell 180:387-402.e16(2020).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.
Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.
Nature 568:511-516(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
Concomitant BCORL1 and BRAF mutations in vemurafenib-resistant melanoma cells.
Piazza R., Gambacorti-Passerini C.
Neoplasia 20:467-477(2018).
Genetic alterations in main candidate genes during melanoma progression.
Manca A., Botti G., Ascierto P.A., Lissia A., Cossu A., Palmieri G.
Oncotarget 9:8531-8541(2018).
Signatures of protein expression revealed by secretome analyses of cancer associated fibroblasts and melanoma cell lines.
Zelanis A.
J. Proteomics 174:1-8(2018).
Characterization of human cancer cell lines by reverse-phase protein arrays.
Liang H.
Cancer Cell 31:225-239(2017).
A landscape of pharmacogenomic interactions in cancer.";
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
Cell 166:740-754(2016).
Combinatorial drug screening and molecular profiling reveal diverse mechanisms of intrinsic and adaptive resistance to BRAF inhibition in V600E BRAF mutant melanomas.
Petricoin E.F. 3rd, Gioeli D., Weber M.J.
Oncotarget 7:2734-2753(2016).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
Systems analysis of adaptive responses to MAP kinase pathway blockade in BRAF mutant melanoma.
Slingluff C.L. Jr., Weber M.J., Mackey A.J., Gioeli D., Bekiranov S.
PLoS ONE 10:E0138210-E0138210(2015).
A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
OncoImmunology 3:e954893.1-e954893.12(2014).
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).
Membrane associated antigens of human malignant melanoma V: Serological typing of cell lines using antisera from nonhuman primates.
Bruggen J., Sorg C., Macher E.
Cancer Immunol. Immunother. 5:53-62(1978).
Expression of surface antigens and its relation to parameters of malignancy in human malignant melanoma.
Bruggen J., Macher E., Sorg C.
Cancer Immunol. Immunother. 10:121-127(1981).
Tissue typing of cells in culture. III. HLA antigens of established human cell lines. Attempts at typing by the mixed hemadsorption technique.
Espmark J.A., Ahlqvist-Roth L., Sarne L., Persson A.
Tissue Antigens 11:279-286(1978).
Nerve growth factor receptors on human melanoma cells in culture.";
Fabricant R.N., De Larco J.E., Todaro G.J.
Proc. Natl. Acad. Sci. U.S.A. 74:565-569(1977).
One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.
Fogh J., Fogh J.M., Orfeo T.
J. Natl. Cancer Inst. 59:221-226(1977).
Human melanoma cells have both nerve growth factor and nerve growth factor-specific receptors on their cell surfaces.
Sherwin S.A., Sliski A.H., Todaro G.J.
Proc. Natl. Acad. Sci. U.S.A. 76:1288-1292(1979).
Absence of HeLa cell contamination in 169 cell lines derived from human tumors.
Fogh J., Wright W.C., Loveless J.D.
J. Natl. Cancer Inst. 58:209-214(1977).
Comparative study of two human melanoma cell lines with different sensitivities to mustine and cisplatin.
Hansson J., Fichtinger-Schepman A.M.J., Edgren M.R., Ringborg U.
Eur. J. Cancer 27:1039-1045(1991).
In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors.
Dosik H., Parks W.P.
J. Natl. Cancer Inst. 51:1417-1423(1973).
Polymorphic enzyme analysis of cultured human tumor cell lines.";
Dracopoli N.C., Fogh J.
J. Natl. Cancer Inst. 70:469-476(1983).
Relationship between karyotype of tissue culture lines and tumorigenicity in nude mice.
Gershwin M.E., Lentz D., Owens R.B.
Exp. Cell Biol. 52:361-370(1984).
A human melanoma line heterogeneous with respect to metastatic capacity in athymic nude mice.
Kozlowski J.M., Hart I.R., Fidler I.J., Hanna N.
J. Natl. Cancer Inst. 72:913-917(1984).
Differential expression of the amv gene in human hematopoietic cells.
Aaronson S.A., Wong-Staal F.
Proc. Natl. Acad. Sci. U.S.A. 79:2194-2198(1982).
Stringent allele/epitope requirements for MART-1/Melan A immunodominance: implications for peptide-based immunotherapy.
Panelli M.C., Parker K.K., Marincola F.M.
J. Immunol. 161:877-889(1998).
Abnormalities in the p34cdc2-related PITSLRE protein kinase gene complex (CDC2L) on chromosome band 1p36 in melanoma.
Lahti J.M., Kidd V.J.
Cancer Genet. Cytogenet. 108:91-99(1999).
Fas-induced apoptosis in human malignant melanoma cell lines is associated with the activation of the p34(cdc2)-related PITSLRE protein kinases.
Ariza M.E., Broome-Powell M., Lahti J.M., Kidd V.J., Nelson M.A.
J. Biol. Chem. 274:28505-28513(1999).
Mutations of the BRAF gene in human cancer.";
Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.
Nature 417:949-954(2002).
Identification of novel and widely expressed cancer/testis gene isoforms that elicit spontaneous cytotoxic T-lymphocyte reactivity to melanoma.
Hunt D.F., Engelhard V.H., Ross M.M., Slingluff C.L. Jr.
Cancer Res. 64:1157-1163(2004).
Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma.
Tsao H., Goel V., Wu H., Yang G., Haluska F.G.
J. Invest. Dermatol. 122:337-341(2004).
Involvement of overexpressed wild-type BRAF in the growth of malignant melanoma cell lines.
Yasui K., Misawa-Furihata A., Kawakami Y., Inazawa J.
Oncogene 23:8796-8804(2004).
Lack of extracellular signal-regulated kinase mitogen-activated protein kinase signaling shows a new type of melanoma.
Sharpless N.E.
Cancer Res. 67:1502-1512(2007).
Conservation of genetic alterations in recurrent melanoma supports the melanoma stem cell hypothesis.
Karai L., Nickoloff B.J., Maio M., Selleri S., Marincola F.M., Wang E.
Cancer Res. 68:122-131(2008).
Systems-level modeling of cancer-fibroblast interaction.";
Finn S.P., Loda M., Mahmood U., Ramaswamy S.
PLoS ONE 4:E6888-E6888(2009).
Signatures of mutation and selection in the cancer genome.";
Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
Nature 463:893-898(2010).
A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
Haber D.A.
Cancer Res. 70:2158-2164(2010).
Integrative genomics identifies molecular alterations that challenge the linear model of melanoma progression.
Ostrer H., Osman I.
Cancer Res. 71:2561-2571(2011).
Induction of arginosuccinate synthetase (ASS) expression affects the antiproliferative activity of arginine deiminase (ADI) in melanoma cells.
Palmieri G.
Oncol. Rep. 25:1495-1502(2011).
Changes in the gene expression profile of A375 human melanoma cells induced by overexpression of multifunctional pigment epithelium-derived factor.
Volpert O.V., Jimenez B.
Melanoma Res. 21:285-297(2011).
Characterization of human melanoma cell lines and melanocytes by proteome analysis.
Elia G., Marincola F.M., McCubrey J.A., Libra M., Travali S., Kane M.
Cell Cycle 10:2924-2936(2011).
Investigating the role of melanin in UVA/UVB- and hydrogen peroxide-induced cellular and mitochondrial ROS production and mitochondrial DNA damage in human melanoma cells.
Swalwell H., Latimer J., Haywood R.M., Birch-Machin M.A.
Free Radic. Biol. Med. 52:626-634(2012).
Human tumor cell strains defective in the repair of alkylation damage.
Mattern M.R.
Carcinogenesis 1:21-32(1980).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
Sensitivity to the MEK inhibitor E6201 in melanoma cells is associated with mutant BRAF and wildtype PTEN status.
Nomoto K., Pollock P.M.
Mol. Cancer 11:75.1-75.15(2012).
Metastatic melanoma cell lines do not secrete IL-1beta but promote IL-1beta production from macrophages.
Cheng P., Dummer R., Kerl K., Contassot E., French L.E.
J. Dermatol. Sci. 74:167-169(2014).