AGSHomo sapiens (Human)Cancer cell line

🤖 AI SummaryBased on 15 publications

Quick Overview

AGS is a human gastric cancer cell line used in cancer research.

Detailed Summary

AGS is a human gastric cancer cell line derived from a gastric adenocarcinoma. It is commonly used in research for studying gastric cancer mechanisms and drug development. The cell line is known to be persistently infected with parainfluenza virus 5 (PIV5), which may influence its biological properties. AGS has been utilized in studies involving gene expression, mutations, and drug sensitivity profiling. Research on AGS has contributed to understanding the role of specific genes and pathways in gastric cancer progression and therapeutic responses.

Research Applications

Cancer researchDrug developmentGene expression studiesMutation analysisDrug sensitivity profiling

Key Characteristics

Persistently infected with PIV5Used in gastric cancer studiesCommonly used in cancer research
Generated on 6/15/2025

Basic Information

Database IDCVCL_0139
SpeciesHomo sapiens (Human)
Tissue SourceStomach[UBERON:UBERON_0000945]

Donor Information

Age54
Age CategoryAdult
SexFemale
Racecaucasian

Disease Information

DiseaseGastric adenocarcinoma
LineageEsophagus/Stomach
SubtypeStomach Adenocarcinoma
OncoTree CodeSTAD

DepMap Information

Source TypeATCC
Source IDACH-000880_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationNone reportedTP53---PubMed=19787792
MutationSimplePIK3CAp.Glu545Ala (c.1634A>C)Heterozygous-from parent cell line AGS
MutationSimplePIK3CAp.Glu453Lys (c.1357G>A)Heterozygous-from parent cell line AGS
MutationSimpleKRASp.Gly12Asp (c.35G>A)Unspecified-PubMed=29786757
MutationSimpleCTNNB1p.Gly34Glu (c.101G>A)Heterozygous-from parent cell line AGS

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
11,12
D10S1248
15
D12S391
19,20
D13S317
12
D16S539
11,13
D18S51
13
D19S433
13.2,16
D1S1656
14,16
D21S11
29
D22S1045
15
D2S1338
20,22
D2S441
10,14
D3S1358
15.2
D5S818
9,12
D7S820
10,11
D8S1179
13
FGA
23,24
Penta D
9,10
Penta E
13,16
TH01
6,7
TPOX
11,12
vWA
16,17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Acquisition of paclitaxel resistance modulates the biological traits of gastric cancer AGS cells and facilitates epithelial to mesenchymal transition and angiogenesis.

Niapour A., Seyedasli N.

Naunyn Schmiedebergs Arch. Pharmacol. 395:515-533(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Long non-coding RNA AK096174 promotes cell proliferation and invasion in gastric cancer by regulating WDR66 expression.

Zhang Y.-Q., Yu S.-T., Zhang Z.-Z., Zhao G., Xu J.

Biosci. Rep. 38:BSR20180277.1-BSR20180277.12(2018).

Forty-nine gastric cancer cell lines with integrative genomic profiling for development of c-MET inhibitor.

Kragh M., Horak I.D., Chung H.C., Rha S.Y.

Int. J. Cancer 143:151-159(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

Genome sequence of the parainfluenza virus 5 strain that persistently infects AGS cells.

Randall R.E.

Genome Announc. 4:e00653.16.1-e00653.16.2(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

OncoImmunology 3:e954893.1-e954893.12(2014).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Integrated exome and transcriptome sequencing reveals ZAK isoform usage in gastric cancer.

Firestein R., Zhang Z.-M.

Nat. Commun. 5:3830.1-3830.8(2014).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

In vitro pharmacogenomic database and chemosensitivity predictive genes in gastric cancer.

Noh S.H., Rha S.Y.

Genomics 93:52-61(2009).

AGS and other tissue culture cells can unknowingly be persistently infected with PIV5; a virus that blocks interferon signalling by degrading STAT1.

Young D.F., Carlos T.S., Hagmaier K., Fan L., Randall R.E.

Virology 365:238-240(2007).

Chemosensitivity profile of cancer cell lines and identification of genes determining chemosensitivity by an integrated bioinformatical approach using cDNA arrays.

Yamori T.

Mol. Cancer Ther. 4:399-412(2005).

Modulation of biological phenotypes for tumor growth and metastasis by target-specific biological inhibitors in gastric cancer.

Kim B.-S., Kim M.Y., Chung H.C.

Int. J. Mol. Med. 4:203-212(1999).

Establishment and characterization of an in vitro model system for human adenocarcinoma of the stomach.

Burger N.L., Boerwinkle W.R., Gourley W.K.

Cancer Res. 43:1703-1709(1983).

Missense mutations and a deletion of the p53 gene in human gastric cancer.

Wada K., Uchida T., Nishisaki H., Nagao M., Kasuga M.

Biochem. Biophys. Res. Commun. 182:215-223(1992).

Establishment of a 5-fluorouracil-resistant human gastric cancer cell line and exploration of its biological characteristics.

Chang H.J., Cho M.-H., Choi M.Y., Lee K.E.

Res. Sq. 2022:1302156-1302156(2022).

Gastric tumor cell lines.";

Sekiguchi M., Suzuki T.

(In book chapter) Atlas of human tumor cell lines; Hay R.J., Park J.-G., Gazdar A.F. (eds.); pp.287-316; Academic Press; New York; USA (1994).

Web Resources