BT-474Homo sapiens (Human)Cancer cell line

Also known as: Bt-474, BT474

🤖 AI SummaryBased on 11 publications

Quick Overview

Human breast cancer cell line with HER2 overexpression, used in cancer research and drug development.

Detailed Summary

BT-474 is a human breast cancer cell line derived from a pleural effusion of a patient with metastatic breast cancer. It is characterized by HER2 overexpression and is commonly used in research to study breast cancer biology, drug resistance, and therapeutic strategies. The cell line has been utilized in various studies to investigate the mechanisms of HER2-targeted therapies and to evaluate the efficacy of novel anticancer agents. BT-474 is also employed in studies related to endocrine resistance and the identification of molecular markers associated with cancer progression. Its genetic and phenotypic profiles make it a valuable model for understanding the complexities of breast cancer and developing targeted treatments.

Research Applications

Cancer researchDrug developmentHER2-targeted therapy studiesEndocrine resistance researchMolecular marker identification

Key Characteristics

HER2 overexpressionMetastatic originUsed in drug sensitivity testingRelevant for breast cancer biology studies
Generated on 6/15/2025

Basic Information

Database IDCVCL_0179
SpeciesHomo sapiens (Human)
Tissue SourceBreast[UBERON:UBERON_0000310]

Donor Information

Age60
Age CategoryAdult
SexFemale
Racecaucasian
Subtype FeaturesER+, PR+, HER2+

Disease Information

DiseaseInvasive breast carcinoma of no special type
LineageBreast
SubtypeBreast Invasive Ductal Carcinoma
OncoTree CodeIDC

DepMap Information

Source TypeATCC
Source IDACH-000927_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
Gene fusionAHCTF1AHCTF1-NAAA--from parent cell line BT-474
Gene fusionMYO9BRAB22A-MYO9B--from parent cell line BT-474
Gene fusionDOK5STARD3-DOK5--from parent cell line BT-474
Gene fusionMRPL45TRPC4AP-MRPL45--from parent cell line BT-474
Gene fusionIKZF3VAPB-IKZF3--from parent cell line BT-474
MutationSimpleBRCA2p.Ser3094Ter (c.9281C>A)Heterozygous-from parent cell line BT-474
MutationSimpleHNF1Ap.Gln495Ter (c.1483C>T)Heterozygous-from parent cell line BT-474
MutationSimpleMAPK1p.His61Gln (c.183C>G)Heterozygous-from parent cell line BT-474
MutationSimplePIK3CAp.Lys111Asn (c.333G>C)Heterozygous-from parent cell line BT-474
MutationSimpleTP53p.Glu285Lys (c.853G>A)UnspecifiedTemperature-sensitivePubMed=23851445, PubMed=17260012

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10,11
D10S1248
15
D12S391
17,18
D13S317
11
D16S539
9,11
D18S51
13,18
D19S433
14,17
D1S1656
13,15.3
D21S11
28,32.2
D22S1045
14
D2S1338
19
D2S441
10,14
D3S1358
17
D5S818
11,13
D7S820
9,12
D8S1179
10,12
FGA
22,25
Penta D
9,14
Penta E
5
TH01
7
TPOX
8
vWA
15,16
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs.

Martens J.W.M.

Breast Cancer Res. 15:R33.1-R33.17(2013).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

HSP90 inhibitor, 17-DMAG, alone and in combination with lapatinib attenuates acquired lapatinib-resistance in ER-positive, HER2-overexpressing breast cancer cell line.

Lee H.J., Shin S., Kang J., Han K.-C., Kim Y.H., Bae J.-W., Park K.H.

Cancers (Basel) 12:2630.1-2630.16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Multidimensional phenotyping of breast cancer cell lines to guide preclinical research.

Lakhani S.R.

Breast Cancer Res. Treat. 167:289-301(2018).

Glycoproteins in claudin-low breast cancer cell lines have a unique expression profile.

Yen T.-Y., Bowen S., Yen R., Piryatinska A., Macher B.A., Timpe L.C.

J. Proteome Res. 16:1391-1400(2017).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Systematic drug screening reveals specific vulnerabilities and co-resistance patterns in endocrine-resistant breast cancer.

Eldfors S., Bruck O., Aittokallio T., Kallioniemi O.-P.

BMC Cancer 16:378.1-378.17(2016).

Phosphoproteome and transcriptome of RA-responsive and RA-resistant breast cancer cell lines.

Carrier M., Joint M., Lutzing R., Page A., Rochette-Egly C.

PLoS ONE 11:E0157290-E0157290(2016).

Whole genome sequence analysis of BT-474 using Complete Genomics' standard and long fragment read technologies.

Liu S.J., Drmanac R., Peters B.A.

GigaScience 5:8.1-8.17(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Metabolic profiling of breast cancer: differences in central metabolism between subtypes of breast cancer cell lines.

Kammerer B.

J. Chromatogr. B 1000:95-104(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

OncoImmunology 3:e954893.1-e954893.12(2014).

The proteomic landscape of triple-negative breast cancer.";

Irie H.Y., Lee S.-I., Blau C.A., Villen J.

Cell Rep. 11:630-644(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Differences and homologies of chromosomal alterations within and between breast cancer cell lines: a clustering analysis.

Ramirez-Clavijo S.R., Pasini B., Sapino A.

Mol. Cytogenet. 7:8.1-8.14(2014).

More than apples and oranges -- detecting cancer with a fruit fly's antenna.

Capuano R., Di Natale C.

Sci. Rep. 4:3576-3576(2014).

Modeling precision treatment of breast cancer.";

Collisson E.A., van 't Veer L.J., Spellman P.T., Gray J.W.

Genome Biol. 14:R110.1-R110.14(2013).

Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes.

Harrell J.C., Roman E., Adamo B., Troester M.A., Perou C.M.

Breast Cancer Res. Treat. 142:237-255(2013).

Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target.

McCormick F., Gray J.W.

Cancer Cell 24:450-465(2013).

A novel approach for characterizing microsatellite instability in cancer cells.

Lu Y.-H., Soong T.D., Elemento O.

PLoS ONE 8:E63056-E63056(2013).

Human breast tumor cells in culture; new concepts in mammary carcinogenesis.

Lasfargues E.Y., Coutinho W.G.

(In book chapter) New frontiers in mammary pathology; Hollmann K.H., de Brux J., Verley J.M. (eds.); pp.117-143; Plenum Press; New York; USA (1981).

Cell lines from human breast.";

Leibovitz A.

(In book chapter) Atlas of human tumor cell lines; Hay R.J., Park J.-G., Gazdar A.F. (eds.); pp.161-184; Academic Press; New York; USA (1994).

Breast cancer stem cells: tumourspheres and implications for therapy.";

Morrison B.J.

Thesis PhD (2010); Griffith University; Brisbane; Australia.

A human breast tumor cell line (BT-474) that supports mouse mammary tumor virus replication.

Lasfargues E.Y., Coutinho W.G., Dion A.S.

In Vitro 15:723-729(1979).

Isolation of two human tumor epithelial cell lines from solid breast carcinomas.

Lasfargues E.Y., Coutinho W.G., Redfield E.S.

J. Natl. Cancer Inst. 61:967-978(1978).

Mutations in p53 as potential molecular markers for human breast cancer.

Runnebaum I.B., Nagarajan M., Bowman M., Soto D., Sukumar S.

Proc. Natl. Acad. Sci. U.S.A. 88:10657-10661(1991).

Cell surface antigens of human ovarian and endometrial carcinoma defined by mouse monoclonal antibodies.

Mattes M.J., Cordon-Cardo C., Lewis J.L. Jr., Old L.J., Lloyd K.O.

Proc. Natl. Acad. Sci. U.S.A. 81:568-572(1984).

Identification of cryptic sites of DNA sequence amplification in human breast cancer by chromosome microdissection.

Guan X.-Y., Meltzer P.S., Dalton W.S., Trent J.M.

Nat. Genet. 8:155-161(1994).

Lack of relationship between CDK activity and G1 cyclin expression in breast cancer cells.

Sweeney K.J., Swarbrick A., Sutherland R.L., Musgrove E.A.

Oncogene 16:2865-2878(1998).

Chromosomal alterations in 15 breast cancer cell lines by comparative genomic hybridization and spectral karyotyping.

Isola J.J., Larsson C.

Genes Chromosomes Cancer 28:308-317(2000).

Comparative genomic hybridization analysis of 38 breast cancer cell lines: a basis for interpreting complementary DNA microarray data.

Gooden G.C., Ethier S.P., Kallioniemi A.H., Kallioniemi O.-P.

Cancer Res. 60:4519-4525(2000).

Aberrations of chromosome 8 in 16 breast cancer cell lines by comparative genomic hybridization, fluorescence in situ hybridization, and spectral karyotyping.

Isola J.J.

Cancer Genet. Cytogenet. 126:1-7(2001).

Assembly of microarrays for genome-wide measurement of DNA copy number.

Pinkel D., Albertson D.G.

Nat. Genet. 29:263-264(2001).

Reciprocal translocations in breast tumor cell lines: cloning of a t(3;20) that targets the FHIT gene.

Birnbaum D., Chaffanet M.

Genes Chromosomes Cancer 35:204-218(2002).

A recurrent chromosome translocation breakpoint in breast and pancreatic cancer cell lines targets the neuregulin/NRG1 gene.

Edwards P.A.W., Chaffanet M.

Genes Chromosomes Cancer 37:333-345(2003).

BRCA1 mutation analysis of 41 human breast cancer cell lines reveals three new deleterious mutants.

van den Ouweland A.M.W., Merajver S.D., Ethier S.P., Schutte M.

Cancer Res. 66:41-45(2006).

Molecular characterization of breast cancer cell lines by a low-density microarray.

Remacle J.

Int. J. Oncol. 27:881-892(2005).

Growth inhibition of carcinogen-transformed MCF-12F breast epithelial cells and hormone-sensitive BT-474 breast cancer cells by 1alpha-hydroxyvitamin D5.

Hussain-Hakimjee E.A., Peng X.-J., Mehta R.R., Mehta R.G.

Carcinogenesis 27:551-559(2006).

Comprehensive copy number profiles of breast cancer cell model genomes.

Shadeo A., Lam W.L.

Breast Cancer Res. 8:R9.1-R9.14(2006).

Thirteen new p53 gene mutants identified among 41 human breast cancer cell lines.

Wasielewski M., Elstrodt F., Klijn J.G.M., Berns E.M.J.J., Schutte M.

Breast Cancer Res. Treat. 99:97-101(2006).

A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes.

Johnson M.D., Lippman M.E., Ethier S.P., Gazdar A.F., Gray J.W.

Cancer Cell 10:515-527(2006).

High-resolution genomic profiles of breast cancer cell lines assessed by tiling BAC array comparative genomic hybridization.

Ringner M., Hoglund M., Borg A.

Genes Chromosomes Cancer 46:543-558(2007).

Characterisation of breast cancer cell lines and establishment of a novel isogenic subclone to study migration, invasion and tumourigenicity.

Hughes L., Malone C., Chumsri S., Burger A.M., McDonnell S.

Clin. Exp. Metastasis 25:549-557(2008).

The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression.

Petersen O.W., Gray J.W., Bissell M.J.

Mol. Oncol. 1:84-96(2007).

Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery.

Pollack J.R.

PLoS ONE 4:E6146-E6146(2009).

Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines.

den Bakker M.A., Foekens J.A., Martens J.W.M., Schutte M.

Breast Cancer Res. Treat. 121:53-64(2010).

Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: activation of AXL.

Sathe G.M., Martin A.-M., Gilmer T.M.

Cancer Res. 69:6871-6878(2009).

Systems-level modeling of cancer-fibroblast interaction.";

Finn S.P., Loda M., Mahmood U., Ramaswamy S.

PLoS ONE 4:E6888-E6888(2009).

Breast cancer cell lines carry cell line-specific genomic alterations that are distinct from aberrations in breast cancer tissues: comparison of the CGH profiles between cancer cell lines and primary cancer tissues.

Yamamoto S., Oka M., Hirano T., Sasaki K.

BMC Cancer 10:15.1-15.10(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Identification of fusion genes in breast cancer by paired-end RNA-sequencing.

Kallioniemi O.-P.

Genome Biol. 12:R6.1-R6.13(2011).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Essential gene profiles in breast, pancreatic, and ovarian cancer cells.

Rottapel R., Neel B.G., Moffat J.

Cancer Discov. 2:172-189(2012).

Molecular characterisation of cell line models for triple-negative breast cancers.

Reis-Filho J.S., Tutt A.

BMC Genomics 13:619.1-619.14(2012).

Anecdotal Information

  • Used in a study utilising the fruit fly's olfactory system to detect cancer cells (PubMed=24389870)