BxPC-3Homo sapiens (Human)Cancer cell line

Also known as: BxPc-3, BXPC-3, Bx-PC3, BXPC3, BxPC3, BxPc3, Biopsy xenograft of Pancreatic Carcinoma line-3

🤖 AI SummaryBased on 12 publications

Quick Overview

Human pancreatic cancer cell line with known mutations in K-ras and p53 genes.

Detailed Summary

The BxPC-3 cell line is a human pancreatic ductal adenocarcinoma cell line established from a primary tumor. It is characterized by frequent mutations in the K-ras gene at codon 12 and alterations in the p53 tumor suppressor gene. These genetic changes are associated with pancreatic carcinogenesis and contribute to the aggressive nature of pancreatic cancer. BxPC-3 cells are widely used in research to study mechanisms of drug resistance, molecular pathways, and therapeutic strategies for pancreatic cancer. The cell line has been utilized in studies involving CRISPR-Cas9 screens, drug sensitivity profiling, and analysis of chromosomal aberrations. It is also used to investigate the role of specific genes in tumor progression and response to treatment.

Research Applications

Cancer geneticsDrug resistance mechanismsMolecular pathways in pancreatic cancerCRISPR-Cas9 screensDrug sensitivity profiling

Key Characteristics

K-ras mutations at codon 12p53 gene alterationsChromosomal aberrationsUsed in drug development studies
Generated on 6/15/2025

Basic Information

Database IDCVCL_0186
SpeciesHomo sapiens (Human)
Tissue SourcePancreas[UBERON:UBERON_0001264]

Donor Information

Age61
Age CategoryAdult
SexFemale

Disease Information

DiseasePancreatic ductal adenocarcinoma
LineagePancreas
SubtypePancreatic Adenocarcinoma
OncoTree CodePAAD

DepMap Information

Source TypeATCC
Source IDACH-000535_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
Gene deletionCDKN2A-HomozygousPossiblePubMed=26870271
Gene deletionSMAD4-Homozygous-from parent cell line BxPC-3
MutationSimpleBRAFp.Val487_Pro492delinsAla (c.1460_1474delGTGTAGGTGCTGTCA)Heterozygous-from parent cell line BxPC-3
MutationNone reportedKRAS---from parent cell line BxPC-3
MutationSimpleTP53p.Tyr220Cys (c.659A>G)Unspecified-PubMed=21173094

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
13
D12S391
20
D13S317
11
D16S539
9,11
D18S51
12
D19S433
13
D21S11
29
D2S1338
17,19
D2S441
12,14
D3S1358
14,16
D5S818
11
D6S1043
12
D7S820
10,13
D8S1179
13
FGA
20,21
Penta D
14
Penta E
12,14
TH01
9
TPOX
8
vWA
14,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Resolution of novel pancreatic ductal adenocarcinoma subtypes by global phosphotyrosine profiling.

Biankin A.V., Wu J.-M., Daly R.J.

Mol. Cell. Proteomics 15:2671-2685(2016).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Establishment of highly invasive pancreatic cancer cell lines and the expression of IL-32.

Tanaka S., Nishida T., Hatta H., Nakajima T.

Oncol. Lett. 20:2888-2896(2020).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Differential effector engagement by oncogenic KRAS.";

McCormick F.

Cell Rep. 22:1889-1902(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

Acquired resistance of pancreatic cancer cells to cisplatin is multifactorial with cell context-dependent involvement of resistance genes.

Mezencev R., Matyunina L.V., Wagner G.T., McDonald J.F.

Cancer Gene Ther. 23:446-453(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Distribution of characteristic mutations in native ductal adenocarcinoma of the pancreas and pancreatic cancer cell lines.

Saeger H.-D.

Cell Biol. Res. Ther. 2:1000104.1-1000104.5(2013).

Human pancreatic carcinomas and cell lines reveal frequent and multiple alterations in the p53 and Rb-1 tumor-suppressor genes.

Klein-Szanto A.J.P.

Oncogene 7:1503-1511(1992).

Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer.

Lane D.P., Lemoine N.R.

Br. J. Cancer 64:1076-1082(1991).

Characterization of a new primary human pancreatic tumor line.";

Pickren J.W., Berjian R., Douglass H.O. Jr., Chu T.M.

Cancer Invest. 4:15-23(1986).

K-ras and p53 alterations in genomic DNA and transcripts of human pancreatic adenocarcinoma cell lines.

Imamura M., Hiai H., Fukumoto M.

Jpn. J. Cancer Res. 85:1005-1014(1994).

Comparative analysis of mutations in the p53 and K-ras genes in pancreatic cancer.

Berrozpe G., Schaeffer J., Peinado M.A., Real F.X., Perucho M.

Int. J. Cancer 58:185-191(1994).

Frequent alterations of the tumor suppressor genes p53 and DCC in human pancreatic carcinoma.

Arnold R.

Gastroenterology 106:1645-1651(1994).

Human ductal adenocarcinomas of the pancreas express extracellular matrix proteins.

Kloppel G.

Br. J. Cancer 69:144-151(1994).

p53 and K-RAS alterations in pancreatic epithelial cell lesions.";

Maurer J., Maacke H., Deppert W.

Oncogene 8:289-298(1993).

Disruption of the antiproliferative TGF-beta signaling pathways in human pancreatic cancer cells.

Reyes G., de Villalonga P., Agell N., Lluis F., Bachs O., Capella G.

Oncogene 17:1969-1978(1998).

Specific chromosomal aberrations and amplification of the AIB1 nuclear receptor coactivator gene in pancreatic carcinomas.

Meltzer P.S., Ried T.

Am. J. Pathol. 154:525-536(1999).

Higher frequency of DPC4/Smad4 alterations in pancreatic cancer cell lines than in primary pancreatic adenocarcinomas.

Chaloupka B., Deiss Y., Simon B., Schudy A.

Cancer Lett. 139:43-49(1999).

Characterization of the mutations of the K-ras, p53, p16, and SMAD4 genes in 15 human pancreatic cancer cell lines.

Sun C.-L., Yamato T., Furukawa T., Ohnishi Y., Kijima H., Horii A.

Oncol. Rep. 8:89-92(2001).

Non-random chromosomal rearrangements in pancreatic cancer cell lines identified by spectral karyotyping.

Sheer D., Moore P.S., Scarpa A., Edwards P.A.W., Lemoine N.R.

Int. J. Cancer 91:350-358(2001).

A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform.

Sipos B., Moser S., Kalthoff H., Torok V., Lohr J.-M., Kloppel G.

Virchows Arch. 442:444-452(2003).

Genome-wide array-based comparative genomic hybridization reveals multiple amplification targets and novel homozygous deletions in pancreatic carcinoma cell lines.

Veltman J.A., van Kessel A.G., Hoglund M.

Cancer Res. 64:3052-3059(2004).

Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity.

Hirohashi S.

Pancreas 29:193-203(2004).

Microarray analyses reveal strong influence of DNA copy number alterations on the transcriptional patterns in pancreatic cancer: implications for the interpretation of genomic amplifications.

Gorunova L., van Kessel A.G., Schoenmakers E.F.P.M., Hoglund M.

Oncogene 24:1794-1801(2005).

Identifying allelic loss and homozygous deletions in pancreatic cancer without matched normals using high-density single-nucleotide polymorphism arrays.

Kern S.E.

Cancer Res. 66:7920-7928(2006).

Activation of Wnt signalling in stroma from pancreatic cancer identified by gene expression profiling.

Schackert H.K., Kloppel G., Kalthoff H., Saeger H.-D., Grutzmann R.

J. Cell. Mol. Med. 12:2823-2835(2008).

Identification of SMURF1 as a possible target for 7q21.3-22.1 amplification detected in a pancreatic cancer cell line by in-house array-based comparative genomic hybridization.

Shiratori K., Hirohashi S., Inazawa J., Imoto I.

Cancer Sci. 99:986-994(2008).

A resource for analysis of microRNA expression and function in pancreatic ductal adenocarcinoma cells.

Mendell J.T.

Cancer Biol. Ther. 8:2013-2024(2009).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Phenotype and genotype of pancreatic cancer cell lines.";

Scaife C.L., Firpo M.A., Mulvihill S.J.

Pancreas 39:425-435(2010).

Alterations of the p53 tumor-suppressor gene and ki-ras oncogene in human pancreatic cancer-derived cell-lines with different metastatic potential.

Shimazoe T., Nawata H., Kono A.

Oncol. Rep. 1:1223-1227(1994).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Essential gene profiles in breast, pancreatic, and ovarian cancer cells.

Rottapel R., Neel B.G., Moffat J.

Cancer Discov. 2:172-189(2012).

KRAS mutational subtype and copy number predict in vitro response of human pancreatic cancer cell lines to MEK inhibition.

Linnartz R., Zubel A., Slamon D.J., Finn R.S.

Br. J. Cancer 111:1788-1801(2014).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors.

Manning G., Settleman J., Hatzivassiliou G., Evangelista M.

Proc. Natl. Acad. Sci. U.S.A. 112:E4410-E4417(2015).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

ASF-4-1 fibroblast-rich culture increases chemoresistance and mTOR expression of pancreatic cancer BxPC-3 cells at the invasive front in vitro, and promotes tumor growth and invasion in vivo.

Fujiwara M., Kanayama K., Hirokawa Y.S., Shiraishi T.

Oncol. Lett. 11:2773-2779(2016).

Evidence for the role of microRNA 374b in acquired cisplatin resistance in pancreatic cancer cells.

Schreiber R., Mezencev R., Matyunina L.V., McDonald J.F.

Cancer Gene Ther. 23:241-245(2016).