Caov-3Homo sapiens (Human)Cancer cell line

Also known as: CaOv-3, CaOV-3, CAOV-3, CAOV3, CaOV3, CaOv3, Caov3, CA-OV-3, CaOV3 (S), CAVO3 (Occasionally.), CaCOV3 (Occasionally.), CACOV-3 (Occasionally.)

🤖 AI SummaryBased on 11 publications

Quick Overview

Human high-grade serous ovarian cancer cell line for research.

Detailed Summary

Caov-3 is a human high-grade serous ovarian cancer cell line derived from a patient with advanced-stage disease. It is widely used in cancer research to study molecular mechanisms, drug responses, and therapeutic strategies. The cell line exhibits characteristics of epithelial cells and is known for its genomic instability and mutations in key cancer-related genes. Caov-3 is particularly valuable for investigating the genetic and molecular features of high-grade serous ovarian cancer, which is the most common and aggressive subtype of ovarian cancer. Its use in preclinical studies helps in understanding tumor biology and developing targeted therapies.

Research Applications

Molecular mechanism studiesDrug response analysisTherapeutic strategy developmentGenomic instability analysis

Key Characteristics

High-grade serous subtypeEpithelial originGenomic instabilityMutations in cancer-related genes
Generated on 6/15/2025

Basic Information

Database IDCVCL_0201
SpeciesHomo sapiens (Human)
Tissue SourceOvary[UBERON:UBERON_0000992]

Donor Information

Age54
Age CategoryAdult
SexFemale
Racecaucasian

Disease Information

DiseaseHigh grade ovarian serous adenocarcinoma
LineageOvary/Fallopian Tube
SubtypeHigh-Grade Serous Ovarian Cancer
OncoTree CodeHGSOC

DepMap Information

Source TypeATCC
Source IDACH-000713_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Gln136Ter (c.406C>T)Unspecified-PubMed=24662767

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10,13
D12S391
15,23
D13S317
12
D16S539
9
D18S51
18
D19S433
14,17
D21S11
30
D2S1338
16,17
D3S1358
16
D5S818
12
D6S1043
12
D7S820
10
D8S1179
9,14
FGA
24
Penta D
12
Penta E
11,15
TH01
7
TPOX
8,10
vWA
16,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.

Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.

Cancer Res. 48:589-601(1988).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Comparative properties of five human ovarian adenocarcinoma cell lines.

Buick R.N., Pullano R., Trent J.M.

Cancer Res. 45:3668-3676(1985).

Mutation of the PTEN tumor suppressor gene is not a feature of ovarian cancers.

Berchuck A., Futreal P.A.

Gynecol. Oncol. 70:13-16(1998).

Expression of human estrogen receptor-alpha and -beta, progesterone receptor, and androgen receptor mRNA in normal and malignant ovarian epithelial cells.

Lau K.-M., Mok S.C., Ho S.-M.

Proc. Natl. Acad. Sci. U.S.A. 96:5722-5727(1999).

CL100 expression is down-regulated in advanced epithelial ovarian cancer and its re-expression decreases its malignant potential.

Auersperg N., Birrer M.J.

Oncogene 21:4435-4447(2002).

Proteomic analysis of ovarian cancer cells reveals dynamic processes of protein secretion and shedding of extra-cellular domains.

Knudsen B.S., Hanash S.M.

PLoS ONE 3:E2425-E2425(2008).

S100A1 expression in ovarian and endometrial endometrioid carcinomas is a prognostic indicator of relapse-free survival.

Kalloger S.E., Boylan K.L.M., Argenta P.A., Skubitz A.P.N.

Am. J. Clin. Pathol. 132:846-856(2009).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Radiosensitivity profiles from a panel of ovarian cancer cell lines exhibiting genetic alterations in p53 and disparate DNA-dependent protein kinase activities.

Long S.B.T., Vonguyen L., Chen D.J., Gray J.W., Chen F.-Q.

Oncol. Rep. 23:1021-1026(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Genomic complexity and AKT dependence in serous ovarian cancer.";

Taylor B.S., Sander C., Rosen N., Levine D.A., Solit D.B.

Cancer Discov. 2:56-67(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

DNA profiling analysis of endometrial and ovarian cell lines reveals misidentification, redundancy and contamination.

Lessey B.A., Jordan V.C., Bradford A.P.

Gynecol. Oncol. 127:241-248(2012).

BRCA1/2 mutation analysis in 41 ovarian cell lines reveals only one functionally deleterious BRCA1 mutation.

Mills G.B., Hennessy B.T.

Mol. Oncol. 7:567-579(2013).

Evaluating cell lines as tumour models by comparison of genomic profiles.

Domcke S., Sinha R., Levine D.A., Sander C., Schultz N.

Nat. Commun. 4:2126.1-2126.10(2013).

Type-specific cell line models for type-specific ovarian cancer research.

Shumansky K., Shah S.P., Kalloger S.E., Huntsman D.G.

PLoS ONE 8:E72162-E72162(2013).

Ovarian cancer cell line panel (OCCP): clinical importance of in vitro morphological subtypes.

Helleman J.

PLoS ONE 9:E103988-E103988(2014).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Characterization of ovarian cancer cell lines as in vivo models for preclinical studies.

Noonan A.M., Annunziata C.M.

Gynecol. Oncol. 142:332-340(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status.

Tyanova S., Montag A., Lastra R.R., Lengyel E., Mann M.

Nat. Commun. 7:12645.1-12645.14(2016).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

Integrated genomic, epigenomic, and expression analyses of ovarian cancer cell lines.

Velculescu V.E., Scharpf R.B.

Cell Rep. 25:2617-2633(2018).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

CPEB4-promoted paclitaxel resistance in ovarian cancer in vitro relies on translational regulation of CSAG2.

Zhang Y.-Q., Gan H.-Y., Zhao F., Ma X.-M., Xie X.-F., Huang R., Zhao J.

Front. Pharmacol. 11:600994.1-600994.10(2020).

Chemoresistant cancer cell lines are characterized by migratory, amino acid metabolism, protein catabolism and IFN1 signalling perturbations.

Hoffmann P., Klingler-Hoffmann M.

Cancers (Basel) 14:2763.1-2763.24(2022).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).