Caki-1Homo sapiens (Human)Cancer cell line

Also known as: CAKI-1, CaKi-1, caki-1, CAKI.1, CAKI 1, CAKI1, Caki1

🤖 AI SummaryBased on 11 publications

Quick Overview

Human renal cell carcinoma cell line for cancer research.

Detailed Summary

Caki-1 is a human renal cell carcinoma cell line derived from a kidney tumor. It is commonly used in research to study the molecular mechanisms of kidney cancer. The cell line is part of the NCI-60 panel, which includes a variety of cancer cell lines for drug screening and genomic studies. Caki-1 has been utilized in studies involving gene expression profiling, mutation analysis, and drug response assays. Its genetic characteristics make it a valuable model for understanding the progression and treatment of renal cell carcinoma.

Research Applications

Genomic studiesDrug screeningGene expression profilingMutation analysisDrug response assays

Key Characteristics

Part of NCI-60 panelUsed in renal cancer researchGenetic model for kidney cancer
Generated on 6/15/2025

Basic Information

Database IDCVCL_0234
SpeciesHomo sapiens (Human)
Tissue SourceSkin[UBERON:UBERON_0002097]

Donor Information

Age49
Age CategoryAdult
SexMale
Racecaucasian

Disease Information

DiseaseClear cell renal cell carcinoma
LineageKidney
SubtypeRenal Clear Cell Carcinoma
OncoTree CodeCCRCC

DepMap Information

Source TypeATCC
Source IDACH-000433_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleRB1p.Leu98Pro (c.293T>C)Heterozygous-from parent cell line Caki-1

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10,11
D13S317
11
D16S539
12
D18S51
14
D19S433
14
D21S11
28,30
D2S1338
17
D3S1358
17
D5S818
11,12
D7S820
8,12
D8S1179
12,14
FGA
26
Penta D
11,12
Penta E
11,22,23
TH01
6,8
TPOX
8,11
vWA
15,17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

One for all -- human kidney Caki-1 cells are highly susceptible to infection with corona- and other respiratory viruses.

Tait-Burkard C.

J. Virol. 97:e00555.23.1-e00555.23.22(2023).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Metabolic footprinting of a clear cell renal cell carcinoma in vitro model for human kidney cancer detection.

Monge M.E.

J. Proteome Res. 17:3877-3888(2018).

Analysis of renal cancer cell lines from two major resources enables genomics-guided cell line selection.

Hsieh J.J.-D., Hakimi A.A.

Nat. Commun. 8:15165.1-15165.10(2017).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

Choosing the right cell line for renal cell cancer research.";

Czarnecka A.M.

Mol. Cancer 15:83.1-83.15(2016).

A map of mobile DNA insertions in the NCI-60 human cancer cell panel.

Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.

Mob. DNA 7:20.1-20.11(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.

Vandesompele J.

Sci. Data 3:160052-160052(2016).

Data for identification of GPI-anchored peptides and omega-sites in cancer cell lines.

Masuishi Y., Kimura Y., Arakawa N., Hirano H.

Data Brief 7:1302-1305(2016).

Identification of glycosylphosphatidylinositol-anchored proteins and omega-sites using TiO2-based affinity purification followed by hydrogen fluoride treatment.

Masuishi Y., Kimura Y., Arakawa N., Hirano H.

J. Proteomics 139:77-83(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

New human tumor cell lines.";

Fogh J., Trempe G.L.

(In book chapter) Human tumor cells in vitro; Fogh J. (eds.); pp.115-159; Springer; New York; USA (1975).

One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.

Fogh J., Fogh J.M., Orfeo T.

J. Natl. Cancer Inst. 59:221-226(1977).

Cultivation, characterization, and identification of human tumor cells with emphasis on kidney, testis, and bladder tumors.

Fogh J.

Natl. Cancer Inst. Monogr. 49:5-9(1978).

Absence of HeLa cell contamination in 169 cell lines derived from human tumors.

Fogh J., Wright W.C., Loveless J.D.

J. Natl. Cancer Inst. 58:209-214(1977).

Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.

Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.

J. Natl. Cancer Inst. 83:757-766(1991).

Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.

Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.

Cancer Res. 48:589-601(1988).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Human urologic cancer cell lines.";

Williams R.D.

Invest. Urol. 17:359-363(1980).

Cell surface antigens of human ovarian and endometrial carcinoma defined by mouse monoclonal antibodies.

Mattes M.J., Cordon-Cardo C., Lewis J.L. Jr., Old L.J., Lloyd K.O.

Proc. Natl. Acad. Sci. U.S.A. 81:568-572(1984).

Distinction of seventy-one cultured human tumor cell lines by polymorphic enzyme analysis.

Wright W.C., Daniels W.P., Fogh J.

J. Natl. Cancer Inst. 66:239-247(1981).

HLA-A, B, C and DR alloantigen expression on forty-six cultured human tumor cell lines.

Pollack M.S., Heagney S.D., Livingston P.O., Fogh J.

J. Natl. Cancer Inst. 66:1003-1012(1981).

Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins.

Rousset M., Zweibaum A., Fogh J.

Cancer Res. 41:1165-1170(1981).

Contribution of chromosome 9p21-22 deletion to the progression of human renal cell carcinoma.

Mishina M., Habuchi T., Takahashi R., Sugiyama T., Yoshida O.

Jpn. J. Cancer Res. 86:795-799(1995).

Screening the p53 status of human cell lines using a yeast functional assay.

Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.

Mol. Carcinog. 19:243-253(1997).

Systematic variation in gene expression patterns in human cancer cell lines.

Botstein D., Brown P.O.

Nat. Genet. 24:227-235(2000).

Combined LOH/CGH analysis proves the existence of interstitial 3p deletions in renal cell carcinoma.

Imreh S., Klein G., Zabarovsky E.R.

Oncogene 19:1392-1399(2000).

Expression of the SART1 tumor rejection antigen in renal cell carcinoma.

Yoshizumi O., Itoh K.

Urol. Res. 28:178-184(2000).

PTEN/MMAC1/TEP1 mutations in human primary renal-cell carcinomas and renal carcinoma cell lines.

Nakatani Y., Hosaka M.

Int. J. Cancer 91:219-224(2001).

Comparative antitumor activity of 5-fluorouracil and 5'-deoxy-5-fluorouridine in combination with interferon-alpha in renal cell carcinoma cell lines.

Nakatani T.

Urol. Int. 73:348-353(2004).

HLA class I and II genotype of the NCI-60 cell lines.";

Morse H.C. 3rd, Stroncek D., Marincola F.M.

J. Transl. Med. 3:11.1-11.8(2005).

Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.

Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.

Mol. Cancer Ther. 5:2606-2612(2006).

Expression of APOBEC3G in kidney cells.";

Komohara Y., Suekane S., Noguchi M., Matsuoka K., Yamada A., Itoh K.

Tissue Antigens 69:95-98(2007).

Caki-1 cells represent an in vitro model system for studying the human proximal tubule epithelium.

Glube N., Giessl A., Wolfrum U., Langguth P.

Nephron Exp. Nephrol. 107:e47-e56(2007).

DNA fingerprinting of the NCI-60 cell line panel.";

Chanock S.J., Weinstein J.N.

Mol. Cancer Ther. 8:713-724(2009).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.

Ambudkar S.V., Gottesman M.M.

Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).

Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.

Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.

PLoS ONE 7:E31628-E31628(2012).

Identification of cancer cell-line origins using fluorescence image-based phenomic screening.

Yoon C.N., Chang Y.-T.

PLoS ONE 7:E32096-E32096(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.

Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.

Science 336:1040-1044(2012).

Loss of PBRM1 expression is associated with renal cell carcinoma progression.

Pawlowski R., Muhl S.M., Sulser T., Krek W., Moch H., Schraml P.

Int. J. Cancer 132:E11-E17(2013).

The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.

Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.

Cancer Res. 73:4372-4382(2013).

Global proteome analysis of the NCI-60 cell line panel.";

Wilhelm M., Kuster B.

Cell Rep. 4:609-620(2013).

The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.

Hirshfield K.M., Oltvai Z.N., Vazquez A.

Cancer Metab. 1:20.1-20.13(2013).

Hypoxia-inducible factor (HIF)-independent expression mechanism and novel function of HIF prolyl hydroxylase-3 in renal cell carcinoma.

Masumori N., Tsukamoto T., Sato N.

J. Cancer Res. Clin. Oncol. 140:503-513(2014).

High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.

Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.

PLoS ONE 9:E92047-E92047(2014).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).