Caki-2Homo sapiens (Human)Cancer cell line
Also known as: CAKI2, Caki2, Caki 2, CAKI 2, caki-2, CaKi-2, CAKI-2
Quick Overview
Caki-2 is a renal cell carcinoma cell line used in cancer research.
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_0235 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Kidney[UBERON:UBERON_0002113] |
Donor Information
Age | 69 |
---|---|
Age Category | Adult |
Sex | Male |
Race | caucasian |
Disease Information
Disease | Papillary renal cell carcinoma |
---|---|
Lineage | Kidney |
Subtype | Papillary Renal Cell Carcinoma |
OncoTree Code | PRCC |
DepMap Information
Source Type | ATCC |
---|---|
Source ID | ACH-000234_source |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
Quantitative proteomics of the Cancer Cell Line Encyclopedia.";
Sellers W.R., Gygi S.P.
Cell 180:387-402.e16(2020).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
Analysis of renal cancer cell lines from two major resources enables genomics-guided cell line selection.
Hsieh J.J.-D., Hakimi A.A.
Nat. Commun. 8:15165.1-15165.10(2017).
Characterization of human cancer cell lines by reverse-phase protein arrays.
Liang H.
Cancer Cell 31:225-239(2017).
Choosing the right cell line for renal cell cancer research.";
Czarnecka A.M.
Mol. Cancer 15:83.1-83.15(2016).
Data for identification of GPI-anchored peptides and omega-sites in cancer cell lines.
Masuishi Y., Kimura Y., Arakawa N., Hirano H.
Data Brief 7:1302-1305(2016).
Identification of glycosylphosphatidylinositol-anchored proteins and omega-sites using TiO2-based affinity purification followed by hydrogen fluoride treatment.
Masuishi Y., Kimura Y., Arakawa N., Hirano H.
J. Proteomics 139:77-83(2016).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).
A comprehensive transcriptional portrait of human cancer cell lines.
Settleman J., Seshagiri S., Zhang Z.-M.
Nat. Biotechnol. 33:306-312(2015).
Loss of PBRM1 expression is associated with renal cell carcinoma progression.
Pawlowski R., Muhl S.M., Sulser T., Krek W., Moch H., Schraml P.
Int. J. Cancer 132:E11-E17(2013).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
Downregulation of SAV1 plays a role in pathogenesis of high-grade clear cell renal cell carcinoma.
Mimata H., Seto M., Moriyama M.
BMC Cancer 11:523.1-523.10(2011).
A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
Haber D.A.
Cancer Res. 70:2158-2164(2010).
Detection of DNA copy number changes and oncogenic signaling abnormalities from gene expression data reveals MYC activation in high-grade papillary renal cell carcinoma.
Kahnoski R., Yang X.-M.J., Teh B.T.
Cancer Res. 67:3171-3176(2007).
Allogeneic hematopoietic cell transplantation for metastatic renal cell carcinoma after nonmyeloablative conditioning: toxicity, clinical response, and immunological response to minor histocompatibility antigens.
Otterud B.E., Leppert M.F., Storb R., Sandmaier B.M.
Clin. Cancer Res. 10:7799-7811(2004).
Expression of the SART1 tumor rejection antigen in renal cell carcinoma.
Yoshizumi O., Itoh K.
Urol. Res. 28:178-184(2000).
Combined LOH/CGH analysis proves the existence of interstitial 3p deletions in renal cell carcinoma.
Imreh S., Klein G., Zabarovsky E.R.
Oncogene 19:1392-1399(2000).
Contribution of chromosome 9p21-22 deletion to the progression of human renal cell carcinoma.
Mishina M., Habuchi T., Takahashi R., Sugiyama T., Yoshida O.
Jpn. J. Cancer Res. 86:795-799(1995).
Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins.
Rousset M., Zweibaum A., Fogh J.
Cancer Res. 41:1165-1170(1981).
Distinction of seventy-one cultured human tumor cell lines by polymorphic enzyme analysis.
Wright W.C., Daniels W.P., Fogh J.
J. Natl. Cancer Inst. 66:239-247(1981).
Cell surface antigens of human ovarian and endometrial carcinoma defined by mouse monoclonal antibodies.
Mattes M.J., Cordon-Cardo C., Lewis J.L. Jr., Old L.J., Lloyd K.O.
Proc. Natl. Acad. Sci. U.S.A. 81:568-572(1984).
Absence of HeLa cell contamination in 169 cell lines derived from human tumors.
Fogh J., Wright W.C., Loveless J.D.
J. Natl. Cancer Inst. 58:209-214(1977).
Cultivation, characterization, and identification of human tumor cells with emphasis on kidney, testis, and bladder tumors.
Fogh J.
Natl. Cancer Inst. Monogr. 49:5-9(1978).
One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.
Fogh J., Fogh J.M., Orfeo T.
J. Natl. Cancer Inst. 59:221-226(1977).
New human tumor cell lines.";
Fogh J., Trempe G.L.
(In book chapter) Human tumor cells in vitro; Fogh J. (eds.); pp.115-159; Springer; New York; USA (1975).