Calu-6Homo sapiens (Human)Cancer cell line
Also known as: CaLu-06, CALU6, Calu6, Calu 6, Calu.6, CALU-6, CaLu-6
Quick Overview
Calu-6 is a human lung cancer cell line used in cancer research.
Detailed Summary
Basic Information
Database ID | CVCL_0236 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Pleural effusion[UBERON:UBERON_0000175] |
Donor Information
Age | 61 |
---|---|
Age Category | Adult |
Sex | Female |
Race | caucasian |
Disease Information
Disease | Lung adenocarcinoma |
---|---|
Lineage | Lung |
Subtype | Lung Adenocarcinoma |
OncoTree Code | LUAD |
DepMap Information
Source Type | ATCC |
---|---|
Source ID | ACH-000264_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
MutationSimple | TP53 | p.Arg196Ter (c.586C>T) | Unspecified | - | PubMed=25275298 |
MutationSimple | KRAS | p.Gln61Lys (c.180_181TC>CA) (c.180_181delinsCA) | Heterozygous | - | Unknown, Unknown, Unknown, PubMed=12794755, PubMed=12068308, PubMed=1855224 |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
Pan-cancer proteomic map of 949 human cell lines.";
Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.
Cancer Cell 40:835-849.e8(2022).
Quantitative proteomics of the Cancer Cell Line Encyclopedia.";
Sellers W.R., Gygi S.P.
Cell 180:387-402.e16(2020).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
Chemistry-first approach for nomination of personalized treatment in lung cancer.
Posner B.A., Minna J.D., Kim H.S., White M.A.
Cell 173:864-878.e29(2018).
Characterization of human cancer cell lines by reverse-phase protein arrays.
Liang H.
Cancer Cell 31:225-239(2017).
A landscape of pharmacogenomic interactions in cancer.";
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
Cell 166:740-754(2016).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).
A comprehensive transcriptional portrait of human cancer cell lines.
Settleman J., Seshagiri S., Zhang Z.-M.
Nat. Biotechnol. 33:306-312(2015).
Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1.
Heymach J.V.
Cancer Discov. 2:798-811(2012).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
Lung cancer cell lines as tools for biomedical discovery and research.
Gazdar A.F., Girard L., Lockwood W.W., Lam W.L., Minna J.D.
J. Natl. Cancer Inst. 102:1310-1321(2010).
A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
Haber D.A.
Cancer Res. 70:2158-2164(2010).
Signatures of mutation and selection in the cancer genome.";
Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
Nature 463:893-898(2010).
RASSF1A gene inactivation in non-small cell lung cancer and its clinical implication.
Mitsudomi T.
Int. J. Cancer 106:45-51(2003).
Mutations of the BRAF gene in human cancer.";
Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.
Nature 417:949-954(2002).
Alterations of integrin expression in human lung cancer.";
Takahashi T., Ueda R.
Jpn. J. Cancer Res. 84:168-174(1993).
Mutations and altered expression of p16INK4 in human cancer.";
Harris C.C.
Proc. Natl. Acad. Sci. U.S.A. 91:11045-11049(1994).
In vivo occurrence of p16 (MTS1) and p15 (MTS2) alterations preferentially in non-small cell lung cancers.
Takahashi T., Takahashi T.
Cancer Res. 55:514-517(1995).
Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins.
Rousset M., Zweibaum A., Fogh J.
Cancer Res. 41:1165-1170(1981).
Distinction of seventy-one cultured human tumor cell lines by polymorphic enzyme analysis.
Wright W.C., Daniels W.P., Fogh J.
J. Natl. Cancer Inst. 66:239-247(1981).
Heterogeneity in the radiation survival curves and biochemical properties of human lung cancer cell lines.
Mitchell J.B.
J. Natl. Cancer Inst. 73:801-807(1984).
Growth of cell lines and clinical specimens of human non-small cell lung cancer in a serum-free defined medium.
Brower M., Carney D.N., Oie H.K., Gazdar A.F., Minna J.D.
Cancer Res. 46:798-806(1986).
Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.
Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.
Cancer Res. 48:589-601(1988).
Evidence for thromboxane biosynthesis in established cell lines derived from human lung adenocarcinomas.
Hubbard W.C., Alley M.C., McLemore T.L., Boyd M.R.
Cancer Res. 48:2674-2677(1988).
Metabolic activation of 4-ipomeanol in human lung, primary pulmonary carcinomas, and established human pulmonary carcinoma cell lines.
Adelberg S., Czerwinski M.J., McMahon N.A., Eggleston J.C., Boyd M.R.
J. Natl. Cancer Inst. 82:1420-1426(1990).
p53 mutations, ras mutations, and p53-heat shock 70 protein complexes in human lung carcinoma cell lines.
Gerwin B.I., Harris C.C.
Cancer Res. 51:4090-4096(1991).