Capan-1Homo sapiens (Human)Cancer cell line

Also known as: CaPan-1, CAPAN-1, Capan 1, CAPAN 1, Capan1, CAPAN1, CANPAN-1

🤖 AI SummaryBased on 6 publications

Quick Overview

Human pancreatic cancer cell line with BRCA2 deficiency and high metastatic potential.

Detailed Summary

Capan-1 is a human pancreatic cancer cell line derived from a liver metastasis of a pancreatic adenocarcinoma. It is characterized by a BRCA2 mutation (c.6174delT) leading to a truncated protein and genomic instability. The cell line exhibits high migratory and invasive capabilities, with evidence of epithelial-mesenchymal transition (EMT) markers such as increased vimentin and decreased E-cadherin. Capan-1 is used in studies of pancreatic cancer metastasis, DNA repair mechanisms, and therapeutic resistance. It has been utilized in research on BRCA2-deficient cancers and in identifying neo-epitopes for immunotherapy.

Research Applications

Metastasis researchDNA repair mechanismsTherapeutic resistanceBRCA2-deficient cancer studiesNeo-epitope identification for immunotherapy

Key Characteristics

BRCA2 mutation (c.6174delT)Genomic instabilityHigh migratory and invasive potentialEMT markers (vimentin up, E-cadherin down)Used in drug sensitivity and resistance studies
Generated on 6/15/2025

Basic Information

Database IDCVCL_0237
SpeciesHomo sapiens (Human)
Tissue SourceLiver[UBERON:UBERON_0002107]

Donor Information

Age40
Age CategoryAdult
SexMale
Racecaucasian

Disease Information

DiseasePancreatic ductal adenocarcinoma
LineagePancreas
SubtypePancreatic Adenocarcinoma
OncoTree CodePAAD

DepMap Information

Source TypeATCC
Source IDACH-000354_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleBRCA2p.Ser1982Argfs*22 (c.5946delT) (6174delT)Heterozygous-Unknown
MutationSimpleFZD10p.Asn54Lys (c.162C>A)Homozygous-from parent cell line Capan-1
MutationSimpleGLT6D1p.Trp198Ter (c.593G>A)Heterozygous-from parent cell line Capan-1
MutationSimpleGRM1p.Tyr486Ter (c.1458C>A)Homozygous-from parent cell line Capan-1
MutationSimpleKRASp.Gly12Val (c.35G>T)HeterozygousAcquiredUnknown, Unknown
MutationSimpleMAP2K4p.Glu221Ter (c.661G>T)Homozygous-from parent cell line Capan-1
MutationSimpleSMAD4p.Ser343Ter (c.1028C>G)Homozygous-from parent cell line Capan-1
MutationSimpleSMAP2p.Ser255Ter (c.764C>G)Heterozygous-from parent cell line Capan-1
MutationSimpleTP53p.Ala159Val (c.476C>T)Homozygous-Unknown

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
11
D10S1248
15
D12S391
23
D13S317
9
D16S539
13,14
D18S51
12
D19S433
14,15
D1S1656
11,16
D21S11
28,30
D22S1045
18,19
D2S1338
20,24
D2S441
10,14
D3S1358
15
D5S818
11
D7S820
10,11
D8S1179
14,16
FGA
24
Penta D
9,13
Penta E
10,12
TH01
6
TPOX
8,11
vWA
16
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Phenotype and genotype of pancreatic cancer cell lines.";

Scaife C.L., Firpo M.A., Mulvihill S.J.

Pancreas 39:425-435(2010).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types.

van 't Veer L.J., Butte A.J., Goldstein T., Sirota M.

Nat. Commun. 10:3574.1-3574.11(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Differential effector engagement by oncogenic KRAS.";

McCormick F.

Cell Rep. 22:1889-1902(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Resolution of novel pancreatic ductal adenocarcinoma subtypes by global phosphotyrosine profiling.

Biankin A.V., Wu J.-M., Daly R.J.

Mol. Cell. Proteomics 15:2671-2685(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

KRAS mutational subtype and copy number predict in vitro response of human pancreatic cancer cell lines to MEK inhibition.

Linnartz R., Zubel A., Slamon D.J., Finn R.S.

Br. J. Cancer 111:1788-1801(2014).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Establishment of a highly migratory subclone reveals that CD133 contributes to migration and invasion through epithelial-mesenchymal transition in pancreatic cancer.

Miyazaki Y., Matsubara S., Natsugoe S., Takao S.

Hum. Cell 25:1-8(2012).

Comprehensive genomic analysis of a BRCA2 deficient human pancreatic cancer.

Ashworth A.

PLoS ONE 6:E21639-E21639(2011).

The proteomic profile of pancreatic cancer cell lines corresponding to carcinogenesis and metastasis.

Yamada M., Fujii K., Koyama K., Hirohashi S., Kondo T.

J. Proteomics Bioinformatics 2:1-18(2009).

Distribution of characteristic mutations in native ductal adenocarcinoma of the pancreas and pancreatic cancer cell lines.

Saeger H.-D.

Cell Biol. Res. Ther. 2:1000104.1-1000104.5(2013).

One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.

Fogh J., Fogh J.M., Orfeo T.

J. Natl. Cancer Inst. 59:221-226(1977).

Absence of HeLa cell contamination in 169 cell lines derived from human tumors.

Fogh J., Wright W.C., Loveless J.D.

J. Natl. Cancer Inst. 58:209-214(1977).

Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer.

Lane D.P., Lemoine N.R.

Br. J. Cancer 64:1076-1082(1991).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Human pancreatic adenocarcinoma line Capan-1 in tissue culture and the nude mouse: morphologic, biologic, and biochemical characteristics.

Lepera R.

Am. J. Pathol. 106:250-260(1982).

Cell surface antigens of human ovarian and endometrial carcinoma defined by mouse monoclonal antibodies.

Mattes M.J., Cordon-Cardo C., Lewis J.L. Jr., Old L.J., Lloyd K.O.

Proc. Natl. Acad. Sci. U.S.A. 81:568-572(1984).

Distinction of seventy-one cultured human tumor cell lines by polymorphic enzyme analysis.

Wright W.C., Daniels W.P., Fogh J.

J. Natl. Cancer Inst. 66:239-247(1981).

HLA-A, B, C and DR alloantigen expression on forty-six cultured human tumor cell lines.

Pollack M.S., Heagney S.D., Livingston P.O., Fogh J.

J. Natl. Cancer Inst. 66:1003-1012(1981).

Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins.

Rousset M., Zweibaum A., Fogh J.

Cancer Res. 41:1165-1170(1981).

Comparative analysis of mutations in the p53 and K-ras genes in pancreatic cancer.

Berrozpe G., Schaeffer J., Peinado M.A., Real F.X., Perucho M.

Int. J. Cancer 58:185-191(1994).

Human ductal adenocarcinomas of the pancreas express extracellular matrix proteins.

Kloppel G.

Br. J. Cancer 69:144-151(1994).

p53 and K-RAS alterations in pancreatic epithelial cell lesions.";

Maurer J., Maacke H., Deppert W.

Oncogene 8:289-298(1993).

Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas.

Kern S.E.

Cancer Res. 56:5360-5364(1996).

Human mitogen-activated protein kinase kinase 4 as a candidate tumor suppressor.

Skolnick M.H., Tavtigian S.V.

Cancer Res. 57:4177-4182(1997).

Specific chromosomal aberrations and amplification of the AIB1 nuclear receptor coactivator gene in pancreatic carcinomas.

Meltzer P.S., Ried T.

Am. J. Pathol. 154:525-536(1999).

Higher frequency of DPC4/Smad4 alterations in pancreatic cancer cell lines than in primary pancreatic adenocarcinomas.

Chaloupka B., Deiss Y., Simon B., Schudy A.

Cancer Lett. 139:43-49(1999).

Loss of the Y chromosome is a frequent chromosomal imbalance in pancreatic cancer and allows differentiation to chronic pancreatitis.

Leder G., Gansauge F., Sorio C., Scarpa A., Gress T.M.

Int. J. Cancer 91:340-344(2001).

Immunocytochemical analysis of cell lines derived from solid tumors.

Quentmeier H., Osborn M., Reinhardt J., Zaborski M., Drexler H.G.

J. Histochem. Cytochem. 49:1369-1378(2001).

A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform.

Sipos B., Moser S., Kalthoff H., Torok V., Lohr J.-M., Kloppel G.

Virchows Arch. 442:444-452(2003).

Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies.

Kern S.E., Goggins M.G., Hruban R.H.

Cancer Res. 63:8614-8622(2003).

Possible causes of chromosome instability: comparison of chromosomal abnormalities in cancer cell lines with mutations in BRCA1, BRCA2, CHK2 and BUB1.

Grigorova M., Staines J.M., Ozdag H., Caldas C., Edwards P.A.W.

Cytogenet. Genome Res. 104:333-340(2004).

Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity.

Hirohashi S.

Pancreas 29:193-203(2004).

Identifying allelic loss and homozygous deletions in pancreatic cancer without matched normals using high-density single-nucleotide polymorphism arrays.

Kern S.E.

Cancer Res. 66:7920-7928(2006).

Resistance to therapy caused by intragenic deletion in BRCA2.";

Levine D.A., Boyd J., Reis-Filho J.S., Ashworth A.

Nature 451:1111-1115(2008).

Activation of Wnt signalling in stroma from pancreatic cancer identified by gene expression profiling.

Schackert H.K., Kloppel G., Kalthoff H., Saeger H.-D., Grutzmann R.

J. Cell. Mol. Med. 12:2823-2835(2008).

Identification of SMURF1 as a possible target for 7q21.3-22.1 amplification detected in a pancreatic cancer cell line by in-house array-based comparative genomic hybridization.

Shiratori K., Hirohashi S., Inazawa J., Imoto I.

Cancer Sci. 99:986-994(2008).

A resource for analysis of microRNA expression and function in pancreatic ductal adenocarcinoma cells.

Mendell J.T.

Cancer Biol. Ther. 8:2013-2024(2009).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).