DLD-1Homo sapiens (Human)Cancer cell line
Also known as: DLD 1, DLD1, CoCL3, DLD
Quick Overview
Human colon epithelial cell line with known APC mutations and drug sensitivity profiles.
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_0248 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Colon[UBERON:UBERON_0001155] |
Donor Information
Age | 67 |
---|---|
Age Category | Adult |
Sex | Male |
Disease Information
Disease | Colon adenocarcinoma |
---|---|
Lineage | Bowel |
Subtype | Colon Adenocarcinoma |
OncoTree Code | COAD |
DepMap Information
Source Type | ATCC |
---|---|
Source ID | ACH-001061_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
MutationSimple | ACVR2A | p.Lys437Argfs*5 (c.1310delA) | Homozygous | - | PubMed=12615714 |
MutationSimple | APC | p.Arg727Met (c.2180G>T) | Heterozygous | - | from parent cell line HCT 15 |
MutationSimple | APC | p.Lys993Asn (c.2979G>T) | Heterozygous | - | from parent cell line HCT 15 |
MutationSimple | APC | p.Ile1417Leufs*2 (c.4248delC) | Heterozygous | - | from parent cell line HCT 15 |
MutationSimple | APC | p.Arg2166Ter (c.6496C>T) | Heterozygous | - | from parent cell line HCT 15 |
MutationSimple | B2M | c.68-1G>T | Heterozygous | Splice acceptor mutation | from parent cell line HCT 15 |
MutationSimple | B2M | p.Tyr30Ter (c.90C>A) | Heterozygous | - | from parent cell line HCT 15 |
MutationSimple | EP300 | p.Glu1014Ter (c.3040G>T) | Heterozygous | - | PubMed=10700188 |
MutationSimple | KRAS | p.Gly13Asp (c.38G>A) | Heterozygous | Somatic | from parent cell line MDA-MB-231 |
MutationSimple | PIK3CA | p.Glu545Lys (c.1633G>A) | Heterozygous | - | from parent cell line MCF-7 |
MutationSimple | PIK3CA | p.Asp549Asn (c.1645G>A) | Heterozygous | - | from parent cell line HCT 15 |
MutationSimple | TGFBR2 | p.Lys128Serfs*35 (c.383delA) | Homozygous | - | PubMed=12615714 |
MutationSimple | TP53 | p.Ser241Phe (c.722C>T) | Unspecified | - | PubMed=23851445, PubMed=17260012 |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
5-fluorouracil response in a large panel of colorectal cancer cell lines is associated with mismatch repair deficiency.
Bracht K., Nicholls A.M., Liu Y., Bodmer W.F.
Br. J. Cancer 103:340-346(2010).
Comparison of different colorectal cancer with liver metastases models using six colorectal cancer cell lines.
Xu Y.-T., Zhang L., Wang Q.-L., Zheng M.-J.
Pathol. Oncol. Res. 26:2177-2183(2020).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
Pharmacoproteomic characterisation of human colon and rectal cancer.
Weichert W., Knapp S., Feller S.M., Kuster B.
Mol. Syst. Biol. 13:951-951(2017).
Multi-omics of 34 colorectal cancer cell lines -- a resource for biomedical studies.
Myklebost O., Skotheim R.I., Sveen A., Lothe R.A.
Mol. Cancer 16:116.1-116.16(2017).
Characterization of human cancer cell lines by reverse-phase protein arrays.
Liang H.
Cancer Cell 31:225-239(2017).
A novel RNA sequencing data analysis method for cell line authentication.
Uhlen M., Al-Khalili Szigyarto C.
PLoS ONE 12:E0171435-E0171435(2017).
APC mutations as a potential biomarker for sensitivity to tankyrase inhibitors in colorectal cancer.
Nagayama S., Fujita N., Sugimoto Y., Seimiya H.
Mol. Cancer Ther. 16:752-762(2017).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
N-glycosylation profiling of colorectal cancer cell lines reveals association of fucosylation with differentiation and caudal type homebox 1 (CDX1)/villin mRNA expression.
Tollenaar R.A.E.M., Rombouts Y., Wuhrer M.
Mol. Cell. Proteomics 15:124-140(2016).
Genome wide expression profiling of cancer cell lines cultured in microgravity reveals significant dysregulation of cell cycle and microRNA gene networks.
Kumar R., Verma R.S.
PLoS ONE 10:E0135958-E0135958(2015).
Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.
Golub T.R., Root D.E., Hahn W.C.
Sci. Data 1:140035-140035(2014).
A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
OncoImmunology 3:e954893.1-e954893.12(2014).
Highly expressed genes in rapidly proliferating tumor cells as new targets for colorectal cancer treatment.
Sanchez A., Schwartz S. Jr., Bilic J., Mariadason J.M., Arango D.
Clin. Cancer Res. 21:3695-3704(2015).
The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets.
Linnebacher M., Cordero F., Di Nicolantonio F., Bardelli A.
Nat. Commun. 6:7002.1-7002.10(2015).
Feasibility of label-free phosphoproteomics and application to base-line signaling of colorectal cancer cell lines.
Pham T.V., Ishihama Y., Verheul H.M.W., Jimenez C.R.
J. Proteomics 127:247-258(2015).
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).
A comprehensive transcriptional portrait of human cancer cell lines.
Settleman J., Seshagiri S., Zhang Z.-M.
Nat. Biotechnol. 33:306-312(2015).
Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer.
Mariadason J.M., Sieber O.M.
Cancer Res. 74:3238-3247(2014).
Epigenetic and genetic features of 24 colon cancer cell lines.";
Hektoen M., Lind G.E., Lothe R.A.
Oncogenesis 2:e71.1-e71.8(2013).
Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines.
Orphanides G., French T., Wessels L.F.A.
BMC Med. Genomics 5:66.1-66.15(2012).
DCK is frequently inactivated in acquired gemcitabine-resistant human cancer cells.
Ishida M., Motoi F., Egawa S., Unno M., Horii A.
Biochem. Biophys. Res. Commun. 421:98-104(2012).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
N,N-dimethylformamide-induced alteration of cell culture characteristics and loss of tumorigenicity in cultured human colon carcinoma cells.
Dexter D.L., Barbosa J.A., Calabresi P.
Cancer Res. 39:1020-1025(1979).
Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.
Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.
J. Natl. Cancer Inst. 83:757-766(1991).
Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.
Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.
Cancer Res. 48:589-601(1988).
Intercellular karyotypic similarity in near-diploid cell lines of human tumor origins.
Chen T.-R., Hay R.J., Macy M.L.
Cancer Genet. Cytogenet. 10:351-362(1983).
Activities of purine-metabolizing enzymes in human colon carcinoma cell lines and xenograft tumors.
Rogler-Brown T.L., Calabresi P., Parks R.E. Jr.
Biochem. Pharmacol. 30:793-798(1981).
DLD-1 and HCT-15 cell lines derived separately from colorectal carcinomas have totally different chromosome changes but the same genetic origin.
Chen T.-R., Dorotinsky C.S., McGuire L.J., Macy M.L., Hay R.J.
Cancer Genet. Cytogenet. 81:103-108(1995).
Increased incidence of p53 mutations is associated with hepatic metastasis in colorectal neoplastic progression.
Steele G., Summerhayes I.C.
Oncogene 11:647-652(1995).
Expression of cytoskeletal-associated protein tyrosine phosphatase PTPH1 mRNA in human hepatocellular carcinoma.
Yachi A.
J. Gastroenterol. 29:727-732(1994).
Mutations and altered expression of p16INK4 in human cancer.";
Harris C.C.
Proc. Natl. Acad. Sci. U.S.A. 91:11045-11049(1994).
Beta 2-microglobulin gene mutations: a study of established colorectal cell lines and fresh tumors.
Bicknell D.C., Rowan A.J., Bodmer W.F.
Proc. Natl. Acad. Sci. U.S.A. 91:4751-4755(1994).
Liver metastases with 10 human colon carcinoma cell lines in nude mice and association with carcinoembryonic antigen production.
Tibbetts L.M., Doremus C.M., Tzanakakis G.N., Vezeridis M.P.
Cancer 71:315-321(1993).
Tissue typing the HLA-A locus from genomic DNA by sequence-specific PCR: comparison of HLA genotype and surface expression on colorectal tumor cell lines.
Bodmer W.F.
Proc. Natl. Acad. Sci. U.S.A. 90:2842-2845(1993).
Screening the p53 status of human cell lines using a yeast functional assay.
Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.
Mol. Carcinog. 19:243-253(1997).
Beta-catenin mutations in cell lines established from human colorectal cancers.
Ilyas M., Tomlinson I.P.M., Rowan A.J., Pignatelli M., Bodmer W.F.
Proc. Natl. Acad. Sci. U.S.A. 94:10330-10334(1997).
Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer.
Sparks A.B., Morin P.J., Vogelstein B., Kinzler K.W.
Cancer Res. 58:1130-1134(1998).
Did the four human cancer cell lines DLD-1, HCT-15, HCT-8, and HRT-18 originate from one and the same patient?
Mareel M.M.
Cancer Genet. Cytogenet. 107:76-79(1998).
Centrosome amplification and instability occurs exclusively in aneuploid, but not in diploid colorectal cancer cell lines, and correlates with numerical chromosomal aberrations.
Neumann T., Jauho A., Auer G., Ried T.
Genes Chromosomes Cancer 27:183-190(2000).
Mutations in hMSH6 alone are not sufficient to cause the microsatellite instability in colorectal cancer cell lines.
Ku J.-L., Yoon K.-A., Kim D.-Y., Park J.-G.
Eur. J. Cancer 35:1724-1729(1999).
Mutations truncating the EP300 acetylase in human cancers.";
Delhanty J.D.A., Ponder B.A.J., Kouzarides T., Caldas C.
Nat. Genet. 24:300-303(2000).
Spectral karyotyping suggests additional subsets of colorectal cancers characterized by pattern of chromosome rearrangement.
Bicknell D.C., Bodmer W.F., Arends M.J., Wyllie A.H., Edwards P.A.W.
Proc. Natl. Acad. Sci. U.S.A. 98:2538-2543(2001).
Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures.
Wolf E., Gabius H.-J.
J. Cancer Res. Clin. Oncol. 127:375-386(2001).
Short tandem repeat profiling provides an international reference standard for human cell lines.
Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.
Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001).
Immunocytochemical analysis of cell lines derived from solid tumors.
Quentmeier H., Osborn M., Reinhardt J., Zaborski M., Drexler H.G.
J. Histochem. Cytochem. 49:1369-1378(2001).
Mutations of the BRAF gene in human cancer.";
Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.
Nature 417:949-954(2002).
Evidence of selection for clones having genetic inactivation of the activin A type II receptor (ACVR2) gene in gastrointestinal cancers.
Willson J.K.V., Yeo C.J., Hruban R.H., Kern S.E.
Cancer Res. 63:994-999(2003).
Analysis of p53 mutations and their expression in 56 colorectal cancer cell lines.
Liu Y., Bodmer W.F.
Proc. Natl. Acad. Sci. U.S.A. 103:976-981(2006).
Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues.
Garcia-Foncillas J.
Mol. Cancer 5:29.1-29.10(2006).
Cell growth, global phosphotyrosine elevation, and c-Met phosphorylation through Src family kinases in colorectal cancer cells.
Emaduddin M., Bicknell D.C., Bodmer W.F., Feller S.M.
Proc. Natl. Acad. Sci. U.S.A. 105:2358-2362(2008).
Definitive molecular cytogenetic characterization of 15 colorectal cancer cell lines.
Camps J., McNeil N.E., Difilippantonio M.J., Ried T.
Genes Chromosomes Cancer 49:204-223(2010).