HCT 116Homo sapiens (Human)Cancer cell line

Also known as: HCT-116, HCT.116, HCT_116, HCT116, HCT116wt, CoCL2, HTC1116 (Occasionally.), HTC116 (Occasionally.), Htc-116 (Occasionally.), HTC-116 (Occasionally.), HTC 116 (Occasionally.), HCT-166 (In a BTO entry (BTO_0004743) now obsoleted.)

🤖 AI SummaryBased on 11 publications

Quick Overview

Human colorectal cancer cell line with APC mutations and tankyrase inhibitor sensitivity.

Detailed Summary

HCT 116 is a human colorectal cancer cell line derived from a colon adenocarcinoma. It is widely used in cancer research due to its well-characterized genetic mutations, including APC gene alterations that lead to Wnt/β-catenin pathway activation. This cell line is particularly notable for its sensitivity to tankyrase inhibitors, which target the Wnt/β-catenin signaling pathway. Research has shown that HCT 116 exhibits distinct responses to these inhibitors based on the presence of specific APC mutations, making it a valuable model for studying therapeutic strategies targeting this pathway. Additionally, HCT 116 has been utilized in studies examining the role of microsatellite instability and genetic diversity in cancer progression, highlighting its importance in understanding tumor heterogeneity and treatment resistance.

Research Applications

Wnt/β-catenin pathway studiesTankyrase inhibitor sensitivity testingMicrosatellite instability analysisGenetic diversity in cancer progression

Key Characteristics

APC gene mutationsSensitivity to tankyrase inhibitorsWnt/β-catenin pathway activationMicrosatellite instability (MSI) status
Generated on 6/15/2025

Basic Information

Database IDCVCL_0291
SpeciesHomo sapiens (Human)
Tissue SourceColon[UBERON:UBERON_0001155]

Donor Information

Age48
Age CategoryAdult
SexMale
Subtype FeaturesMSI

Disease Information

DiseaseColon carcinoma
LineageBowel
SubtypeColon Adenocarcinoma
OncoTree CodeCOAD

DepMap Information

Source TypeATCC
Source IDACH-000971_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleACVR2Ap.Lys437Argfs*5 (c.1310delA)Homozygous-PubMed=12615714
MutationSimpleBRCA2p.Ile2675Aspfs*6 (c.8021dupA) (c.8021_8022insA)Heterozygous-from parent cell line HCT 116
MutationSimpleCDKN2Ap.Arg24Serfs*20 (c.68dupG) (c.68_69insG) (p.G23fs)Heterozygous-from parent cell line HCT 116
MutationSimpleCDKN2Ap.Asp74fs*21 (c.220delG)Heterozygous-PubMed=17088437
MutationSimpleCDKN2Ap.Glu33Argfs*20 (c.97delG)Heterozygous-Unknown
MutationSimpleCTNNB1p.Ser45del (c.133_135delTCT)Homozygous-PubMed=33379206
MutationSimpleEP300p.Met1470Cysfs*22 (c.4408delA)Heterozygous-from parent cell line HCT 116
MutationSimpleEP300p.Asn1700Thrfs*9 (c.5099delA)Hemizygous-PubMed=10700188
MutationSimpleKRASp.Gly13Asp (c.38G>A)HeterozygousSomaticfrom parent cell line MDA-MB-231
MutationSimplePIK3CAp.His1047Arg (c.3140A>G)Unspecified-PubMed=25926053, PubMed=20570890
MutationSimplePPM1Dp.Leu450Ter (c.1349delT) (p.Leu450fs) (c.1344delT)Heterozygous-from parent cell line HCT 116
MutationSimpleTGFBR2p.Lys128Serfs*35 (c.383delA)Homozygous-PubMed=12615714
MutationNone reportedTP53---PubMed=19787792

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
7,9,10,11
D13S317
10,12
D16S539
11,12,13,14
D18S51
16,17
D19S433
12
D21S11
29,30
D2S1338
16
D3S1358
12,18,19
D5S818
10,11
D7S820
11,12
D8S1179
10,12,14,15
FGA
18,23
Penta D
9,13
Penta E
12,13,14
TH01
8,9
TPOX
8
vWA
17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Searching for microsatellite mutations in coding regions in lung, breast, ovarian and colorectal cancers.

Minna J.D.

Oncogene 20:1005-1009(2001).

Characterisation of colorectal cancer cell lines through proteomic profiling of their extracellular vesicles.

Flobak A., Laegreid A., Thommesen L.

Proteomes 11:3.1-3.20(2023).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

The cancer SENESCopedia: a delineation of cancer cell senescence.";

Leite de Oliveira R., Wessels L.F.A., Bernards R.

Cell Rep. 36:109441.1-109441.22(2021).

Isolation and characterization of two novel colorectal cancer cell lines, containing a subpopulation with potential stem-like properties: treatment options by MYC/NMYC inhibition.

Forster C., Wilkens L., Kruger M., Kaltschmidt B., Kaltschmidt C.

Cancers (Basel) 12:2582.1-2582.34(2020).

Comparison of different colorectal cancer with liver metastases models using six colorectal cancer cell lines.

Xu Y.-T., Zhang L., Wang Q.-L., Zheng M.-J.

Pathol. Oncol. Res. 26:2177-2183(2020).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Differential effector engagement by oncogenic KRAS.";

McCormick F.

Cell Rep. 22:1889-1902(2018).

In vitro characterization of spheres derived from colorectal cancer cell lines.

Olejniczak A., Szarynska M., Kmiec Z.

Int. J. Oncol. 52:599-612(2018).

Pharmacoproteomic characterisation of human colon and rectal cancer.

Weichert W., Knapp S., Feller S.M., Kuster B.

Mol. Syst. Biol. 13:951-951(2017).

Genomic determinants of protein abundance variation in colorectal cancer cells.

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Choudhary J.S.

Cell Rep. 20:2201-2214(2017).

Multi-omics of 34 colorectal cancer cell lines -- a resource for biomedical studies.

Myklebost O., Skotheim R.I., Sveen A., Lothe R.A.

Mol. Cancer 16:116.1-116.16(2017).

An optimized shotgun strategy for the rapid generation of comprehensive human proteomes.

Lindbjerg Andersen C., Nielsen M.L., Olsen J.V.

Cell Syst. 4:587-599.e4(2017).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A novel RNA sequencing data analysis method for cell line authentication.

Uhlen M., Al-Khalili Szigyarto C.

PLoS ONE 12:E0171435-E0171435(2017).

APC mutations as a potential biomarker for sensitivity to tankyrase inhibitors in colorectal cancer.

Nagayama S., Fujita N., Sugimoto Y., Seimiya H.

Mol. Cancer Ther. 16:752-762(2017).

A map of mobile DNA insertions in the NCI-60 human cancer cell panel.

Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.

Mob. DNA 7:20.1-20.11(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.

Vandesompele J.

Sci. Data 3:160052-160052(2016).

Single-molecule optical genome mapping of a human HapMap and a colorectal cancer cell line.

Teo A.S.M., Verzotto D., Yao F., Nagarajan N., Hillmer A.M.

GigaScience 4:65.1-65.6(2015).

N-glycosylation profiling of colorectal cancer cell lines reveals association of fucosylation with differentiation and caudal type homebox 1 (CDX1)/villin mRNA expression.

Tollenaar R.A.E.M., Rombouts Y., Wuhrer M.

Mol. Cell. Proteomics 15:124-140(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Metabolic signatures differentiate ovarian from colon cancer cell lines.

Suhre K., Rafii A.

J. Transl. Med. 13:223.1-223.12(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

OncoImmunology 3:e954893.1-e954893.12(2014).

Highly expressed genes in rapidly proliferating tumor cells as new targets for colorectal cancer treatment.

Sanchez A., Schwartz S. Jr., Bilic J., Mariadason J.M., Arango D.

Clin. Cancer Res. 21:3695-3704(2015).

The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets.

Linnebacher M., Cordero F., Di Nicolantonio F., Bardelli A.

Nat. Commun. 6:7002.1-7002.10(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

Feasibility of label-free phosphoproteomics and application to base-line signaling of colorectal cancer cell lines.

Pham T.V., Ishihama Y., Verheul H.M.W., Jimenez C.R.

J. Proteomics 127:247-258(2015).

Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation.

Bassani-Sternberg M., Pletscher-Frankild S., Jensen L.J., Mann M.

Mol. Cell. Proteomics 14:658-673(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer.

Mariadason J.M., Sieber O.M.

Cancer Res. 74:3238-3247(2014).

High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.

Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.

PLoS ONE 9:E92047-E92047(2014).

The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.

Hirshfield K.M., Oltvai Z.N., Vazquez A.

Cancer Metab. 1:20.1-20.13(2013).

Epigenetic and genetic features of 24 colon cancer cell lines.";

Hektoen M., Lind G.E., Lothe R.A.

Oncogenesis 2:e71.1-e71.8(2013).

Global proteome analysis of the NCI-60 cell line panel.";

Wilhelm M., Kuster B.

Cell Rep. 4:609-620(2013).

The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.

Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.

Cancer Res. 73:4372-4382(2013).

A novel approach for characterizing microsatellite instability in cancer cells.

Lu Y.-H., Soong T.D., Elemento O.

PLoS ONE 8:E63056-E63056(2013).

Gain-of-function mutations of PPM1D/Wip1 impair the p53-dependent G1 checkpoint.

Macurek L.

J. Cell Biol. 201:511-521(2013).

Global metabolite profiling of human colorectal cancer xenografts in mice using HPLC-MS/MS.

Barnes A.J.

J. Proteome Res. 12:2980-2986(2013).

Acquired irinotecan resistance is accompanied by stable modifications of cell cycle dynamics independent of MSI status.

Guerin E., Escargueil A.E., Larsen A.K.

Int. J. Oncol. 42:1644-1653(2013).

Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines.

Orphanides G., French T., Wessels L.F.A.

BMC Med. Genomics 5:66.1-66.15(2012).

Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.

Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.

Science 336:1040-1044(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Identification of cancer cell-line origins using fluorescence image-based phenomic screening.

Yoon C.N., Chang Y.-T.

PLoS ONE 7:E32096-E32096(2012).

Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.

Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.

PLoS ONE 7:E31628-E31628(2012).

JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs.

Kong D.-X., Yamori T.

Bioorg. Med. Chem. 20:1947-1951(2012).

Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.

Ambudkar S.V., Gottesman M.M.

Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).

Therapeutic reactivation of mutant p53 protein by quinazoline derivatives.

Ding A., Baguley B.C.

Invest. New Drugs 30:2035-2045(2012).

5-fluorouracil response in a large panel of colorectal cancer cell lines is associated with mismatch repair deficiency.

Bracht K., Nicholls A.M., Liu Y., Bodmer W.F.

Br. J. Cancer 103:340-346(2010).

Genomic and biological characterization of exon 4 KRAS mutations in human cancer.

Lash A., Ladanyi M., Saltz L.B., Heguy A., Paty P.B., Solit D.B.

Cancer Res. 70:5901-5911(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Definitive molecular cytogenetic characterization of 15 colorectal cancer cell lines.

Camps J., McNeil N.E., Difilippantonio M.J., Ried T.

Genes Chromosomes Cancer 49:204-223(2010).

DNA fingerprinting of the NCI-60 cell line panel.";

Chanock S.J., Weinstein J.N.

Mol. Cancer Ther. 8:713-724(2009).

Altered expression of cell proliferation-related and interferon-stimulated genes in colon cancer cells resistant to SN38.

Del Rio M.

Cancer Biol. Ther. 7:822-832(2008).

Cell growth, global phosphotyrosine elevation, and c-Met phosphorylation through Src family kinases in colorectal cancer cells.

Emaduddin M., Bicknell D.C., Bodmer W.F., Feller S.M.

Proc. Natl. Acad. Sci. U.S.A. 105:2358-2362(2008).

Colon carcinoma cells harboring PIK3CA mutations display resistance to growth factor deprivation induced apoptosis.

Kan J.L.C., Gibson N.W., Willson J.K.V., Cowell J.K., Brattain M.G.

Mol. Cancer Ther. 6:1143-1150(2007).

High resolution array-CGH analysis of single cells.";

Carter N.P., Speicher M.R.

Nucleic Acids Res. 35:e15.1-e15.10(2007).

Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.

Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.

Mol. Cancer Ther. 5:2606-2612(2006).

Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues.

Garcia-Foncillas J.

Mol. Cancer 5:29.1-29.10(2006).

Analysis of p53 mutations and their expression in 56 colorectal cancer cell lines.

Liu Y., Bodmer W.F.

Proc. Natl. Acad. Sci. U.S.A. 103:976-981(2006).

p53-defective tumors with a functional apoptosome-mediated pathway: a new therapeutic target.

Tomoda H., Yamori T., Tsuruo T.

J. Natl. Cancer Inst. 97:765-777(2005).

HLA class I and II genotype of the NCI-60 cell lines.";

Morse H.C. 3rd, Stroncek D., Marincola F.M.

J. Transl. Med. 3:11.1-11.8(2005).

Variation in the extent of microsatellite instability in human cell lines with defects in different mismatch repair genes.

Yamada N.A., Castro A., Farber R.A.

Mutagenesis 18:277-282(2003).

Comprehensive sampling of gene expression in human cell lines with massively parallel signature sequencing.

Strausberg R.L.

Proc. Natl. Acad. Sci. U.S.A. 100:4702-4705(2003).

Evidence of selection for clones having genetic inactivation of the activin A type II receptor (ACVR2) gene in gastrointestinal cancers.

Willson J.K.V., Yeo C.J., Hruban R.H., Kern S.E.

Cancer Res. 63:994-999(2003).

Spectral karyotype analysis of colon cancer cell lines of the tumor suppressor and mutator pathway.

Koehrle J., Al-Taie O.

Cytogenet. Genome Res. 98:22-28(2002).

Mutations of the BRAF gene in human cancer.";

Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.

Nature 417:949-954(2002).

Assembly of microarrays for genome-wide measurement of DNA copy number.

Pinkel D., Albertson D.G.

Nat. Genet. 29:263-264(2001).

Extensive characterization of genetic alterations in a series of human colorectal cancer cell lines.

Hamelin R.

Oncogene 20:5025-5032(2001).

Short tandem repeat profiling provides an international reference standard for human cell lines.

Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.

Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001).

Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures.

Wolf E., Gabius H.-J.

J. Cancer Res. Clin. Oncol. 127:375-386(2001).

Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.

Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.

J. Natl. Cancer Inst. 83:757-766(1991).

Determination of the levels of urokinase and its receptor in human colon carcinoma cell lines.

Boyd D., Florent G., Kim P., Brattain M.G.

Cancer Res. 48:3112-3116(1988).

Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.

Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.

Cancer Res. 48:589-601(1988).

Selective modifications of cellular proteins in intratumoral subpopulations of human colonic carcinoma cells.

Chakrabarty S., Miller C.A. 3rd, Brattain M.G.

Cancer Invest. 4:5-14(1986).

Heterogeneity of human colon carcinoma.";

Willson J.K.V., Long B.

Cancer Metastasis Rev. 3:177-191(1984).

Heterogeneity of malignant cells from a human colonic carcinoma.";

Brattain M.G., Fine W.D., Khaled F.M., Thompson J., Brattain D.E.

Cancer Res. 41:1751-1756(1981).

Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability.

Brattain M.G., Willson J.K.V.

Science 268:1336-1338(1995).

Increased mutation rate at the hprt locus accompanies microsatellite instability in colon cancer.

Willson J.K.V., Veigl M.L., Sedwick W.D., Markowitz S.D.

Oncogene 10:33-37(1995).

Mutations and altered expression of p16INK4 in human cancer.";

Harris C.C.

Proc. Natl. Acad. Sci. U.S.A. 91:11045-11049(1994).

Inverse correlation between RER+ status and p53 mutation in colorectal cancer cell lines.

Thomas G., Hamelin R.

Oncogene 13:2727-2730(1996).

BAT-26, an indicator of the replication error phenotype in colorectal cancers and cell lines.

Hamelin R.

Cancer Res. 57:300-303(1997).

HLA-A locus-restricted and tumor-specific CTLs in tumor-infiltrating lymphocytes of patients with non-small cell lung cancer.

Seki N., Hoshino T., Kikuchi M., Hayashi A., Itoh K.

Cell. Immunol. 175:101-110(1997).

CD4+ hepatic cancer-specific cytotoxic T lymphocytes in patients with hepatocellular carcinoma.

Itoh K.

Cell. Immunol. 177:176-181(1997).

Beta-catenin mutations in cell lines established from human colorectal cancers.

Ilyas M., Tomlinson I.P.M., Rowan A.J., Pignatelli M., Bodmer W.F.

Proc. Natl. Acad. Sci. U.S.A. 94:10330-10334(1997).

Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer.

Sparks A.B., Morin P.J., Vogelstein B., Kinzler K.W.

Cancer Res. 58:1130-1134(1998).

Chromosome number and structure both are markedly stable in RER colorectal cancers and are not destabilized by mutation of p53.

Veigl M.L., Willson J.K.V., Schwartz S., Markowitz S.D.

Oncogene 17:719-725(1998).

Centrosome amplification and instability occurs exclusively in aneuploid, but not in diploid colorectal cancer cell lines, and correlates with numerical chromosomal aberrations.

Neumann T., Jauho A., Auer G., Ried T.

Genes Chromosomes Cancer 27:183-190(2000).

Mutations in hMSH6 alone are not sufficient to cause the microsatellite instability in colorectal cancer cell lines.

Ku J.-L., Yoon K.-A., Kim D.-Y., Park J.-G.

Eur. J. Cancer 35:1724-1729(1999).

Systematic variation in gene expression patterns in human cancer cell lines.

Botstein D., Brown P.O.

Nat. Genet. 24:227-235(2000).

Mutations truncating the EP300 acetylase in human cancers.";

Delhanty J.D.A., Ponder B.A.J., Kouzarides T., Caldas C.

Nat. Genet. 24:300-303(2000).

APC mutations in sporadic colorectal tumors: a mutational 'hotspot' and interdependence of the 'two hits'.

Papadopoulou A., Bicknell D.C., Bodmer W.F., Tomlinson I.P.M.

Proc. Natl. Acad. Sci. U.S.A. 97:3352-3357(2000).

Spectral karyotyping suggests additional subsets of colorectal cancers characterized by pattern of chromosome rearrangement.

Bicknell D.C., Bodmer W.F., Arends M.J., Wyllie A.H., Edwards P.A.W.

Proc. Natl. Acad. Sci. U.S.A. 98:2538-2543(2001).