HCT 15Homo sapiens (Human)Cancer cell line

Also known as: HCT-15, HCT.15, HCT15, HTC15 (Occasionally.), HTC-15 (Occasionally.)

🤖 AI SummaryBased on 14 publications

Quick Overview

HCT 15 is a human colon epithelial cell line used in cancer research.

Detailed Summary

HCT 15 is a human colon epithelial cell line derived from colorectal cancer. It is widely used in research to study the molecular mechanisms of colorectal cancer, including the role of APC mutations in sensitivity to tankyrase inhibitors. The cell line has been characterized for its genetic and molecular profiles, including mutations in APC and other key genes. HCT 15 is also utilized in studies involving drug response and targeted therapies, providing insights into the effectiveness of various treatments in colorectal cancer models. Its use in high-throughput screening and functional genomics studies further highlights its importance in cancer research.

Research Applications

Molecular mechanisms of colorectal cancerAPC mutation analysisDrug sensitivity studiesHigh-throughput screeningFunctional genomics

Key Characteristics

APC mutationsSensitivity to tankyrase inhibitorsUsed in drug response studies
Generated on 6/15/2025

Basic Information

Database IDCVCL_0292
SpeciesHomo sapiens (Human)
Tissue SourceColon[UBERON:UBERON_0001155]

Donor Information

Age67
Age CategoryAdult
SexMale
Subtype FeaturesMSI

Disease Information

DiseaseColon adenocarcinoma
LineageBowel
SubtypeColon Adenocarcinoma
OncoTree CodeCOAD

DepMap Information

Source TypeATCC
Source IDACH-000997_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleAPCp.Arg727Met (c.2180G>T)Heterozygous-from parent cell line HCT 15
MutationSimpleAPCp.Lys993Asn (c.2979G>T)Heterozygous-from parent cell line HCT 15
MutationSimpleAPCp.Ile1417Leufs*2 (c.4248delC)Heterozygous-from parent cell line HCT 15
MutationSimpleAPCp.Arg2166Ter (c.6496C>T)Heterozygous-from parent cell line HCT 15
MutationSimpleB2Mc.68-1G>THeterozygousSplice acceptor mutationfrom parent cell line HCT 15
MutationSimpleB2Mp.Tyr30Ter (c.90C>A)Heterozygous-from parent cell line HCT 15
MutationSimpleBRCA2p.Cys1200Terfs (c.3599_3600delGT) (3827delGT)Heterozygous-PubMed=15645491
MutationSimpleBRCA2p.Asn1784Hisfs*7 (c.5350_5351delAA)Heterozygous-from parent cell line KM12
MutationSimpleCHEK2p.Arg145Trp (c.433C>T)Heterozygous-from parent cell line HCT 15
MutationSimpleKRASp.Gly13Asp (c.38G>A)HeterozygousSomaticfrom parent cell line MDA-MB-231
MutationSimplePIK3CAp.Glu545Lys (c.1633G>A)Heterozygous-from parent cell line MCF-7
MutationSimplePIK3CAp.Asp549Asn (c.1645G>A)Heterozygous-from parent cell line HCT 15
MutationSimpleTP53p.Ser241Phe (c.722C>T)Unspecified-PubMed=23851445, PubMed=17260012
MutationSimpleTP53c.1101-2A>CHeterozygousSplice acceptor mutationfrom parent cell line HCT 15

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X,Y
CSF1PO
12
D10S1248
13,15
D12S391
19,22
D13S317
8,11
D16S539
12,13
D18S51
11,17
D19S433
14,16
D1S1656
17.3,19.3
D21S11
29,32.2
D22S1045
17
D2S1338
17,25
D2S441
13,15
D3S1358
17
D5S818
13
D7S820
10,12
D8S1179
15
DYS391
11
FGA
15,22
Penta D
9,14
Penta E
7,14
TH01
7,9.3
TPOX
8,11
vWA
18,19
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

5-fluorouracil response in a large panel of colorectal cancer cell lines is associated with mismatch repair deficiency.

Bracht K., Nicholls A.M., Liu Y., Bodmer W.F.

Br. J. Cancer 103:340-346(2010).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Differential effector engagement by oncogenic KRAS.";

McCormick F.

Cell Rep. 22:1889-1902(2018).

Genomic determinants of protein abundance variation in colorectal cancer cells.

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Choudhary J.S.

Cell Rep. 20:2201-2214(2017).

Multi-omics of 34 colorectal cancer cell lines -- a resource for biomedical studies.

Myklebost O., Skotheim R.I., Sveen A., Lothe R.A.

Mol. Cancer 16:116.1-116.16(2017).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A novel RNA sequencing data analysis method for cell line authentication.

Uhlen M., Al-Khalili Szigyarto C.

PLoS ONE 12:E0171435-E0171435(2017).

APC mutations as a potential biomarker for sensitivity to tankyrase inhibitors in colorectal cancer.

Nagayama S., Fujita N., Sugimoto Y., Seimiya H.

Mol. Cancer Ther. 16:752-762(2017).

A map of mobile DNA insertions in the NCI-60 human cancer cell panel.

Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.

Mob. DNA 7:20.1-20.11(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.

Vandesompele J.

Sci. Data 3:160052-160052(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

N-glycosylation profiling of colorectal cancer cell lines reveals association of fucosylation with differentiation and caudal type homebox 1 (CDX1)/villin mRNA expression.

Tollenaar R.A.E.M., Rombouts Y., Wuhrer M.

Mol. Cell. Proteomics 15:124-140(2016).

Metabolic signatures differentiate ovarian from colon cancer cell lines.

Suhre K., Rafii A.

J. Transl. Med. 13:223.1-223.12(2015).

Highly expressed genes in rapidly proliferating tumor cells as new targets for colorectal cancer treatment.

Sanchez A., Schwartz S. Jr., Bilic J., Mariadason J.M., Arango D.

Clin. Cancer Res. 21:3695-3704(2015).

The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets.

Linnebacher M., Cordero F., Di Nicolantonio F., Bardelli A.

Nat. Commun. 6:7002.1-7002.10(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer.

Mariadason J.M., Sieber O.M.

Cancer Res. 74:3238-3247(2014).

High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.

Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.

PLoS ONE 9:E92047-E92047(2014).

The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.

Hirshfield K.M., Oltvai Z.N., Vazquez A.

Cancer Metab. 1:20.1-20.13(2013).

Epigenetic and genetic features of 24 colon cancer cell lines.";

Hektoen M., Lind G.E., Lothe R.A.

Oncogenesis 2:e71.1-e71.8(2013).

Global proteome analysis of the NCI-60 cell line panel.";

Wilhelm M., Kuster B.

Cell Rep. 4:609-620(2013).

The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.

Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.

Cancer Res. 73:4372-4382(2013).

Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.

Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.

Science 336:1040-1044(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Identification of cancer cell-line origins using fluorescence image-based phenomic screening.

Yoon C.N., Chang Y.-T.

PLoS ONE 7:E32096-E32096(2012).

Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.

Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.

PLoS ONE 7:E31628-E31628(2012).

JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs.

Kong D.-X., Yamori T.

Bioorg. Med. Chem. 20:1947-1951(2012).

Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.

Ambudkar S.V., Gottesman M.M.

Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).

N,N-dimethylformamide-induced alteration of cell culture characteristics and loss of tumorigenicity in cultured human colon carcinoma cells.

Dexter D.L., Barbosa J.A., Calabresi P.

Cancer Res. 39:1020-1025(1979).

Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.

Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.

J. Natl. Cancer Inst. 83:757-766(1991).

Inhibition of the growth of human colon cancer xenografts by polar solvents.

Dexter D.L., Spremulli E.N., Matook G.M., Diamond I., Calabresi P.

Cancer Res. 42:5018-5022(1982).

Activities of purine-metabolizing enzymes in human colon carcinoma cell lines and xenograft tumors.

Rogler-Brown T.L., Calabresi P., Parks R.E. Jr.

Biochem. Pharmacol. 30:793-798(1981).

DLD-1 and HCT-15 cell lines derived separately from colorectal carcinomas have totally different chromosome changes but the same genetic origin.

Chen T.-R., Dorotinsky C.S., McGuire L.J., Macy M.L., Hay R.J.

Cancer Genet. Cytogenet. 81:103-108(1995).

Mutations and altered expression of p16INK4 in human cancer.";

Harris C.C.

Proc. Natl. Acad. Sci. U.S.A. 91:11045-11049(1994).

Beta 2-microglobulin gene mutations: a study of established colorectal cell lines and fresh tumors.

Bicknell D.C., Rowan A.J., Bodmer W.F.

Proc. Natl. Acad. Sci. U.S.A. 91:4751-4755(1994).

Tissue typing the HLA-A locus from genomic DNA by sequence-specific PCR: comparison of HLA genotype and surface expression on colorectal tumor cell lines.

Bodmer W.F.

Proc. Natl. Acad. Sci. U.S.A. 90:2842-2845(1993).

Inverse correlation between RER+ status and p53 mutation in colorectal cancer cell lines.

Thomas G., Hamelin R.

Oncogene 13:2727-2730(1996).

BAT-26, an indicator of the replication error phenotype in colorectal cancers and cell lines.

Hamelin R.

Cancer Res. 57:300-303(1997).

Did the four human cancer cell lines DLD-1, HCT-15, HCT-8, and HRT-18 originate from one and the same patient?

Mareel M.M.

Cancer Genet. Cytogenet. 107:76-79(1998).

Systematic variation in gene expression patterns in human cancer cell lines.

Botstein D., Brown P.O.

Nat. Genet. 24:227-235(2000).

APC mutations in sporadic colorectal tumors: a mutational 'hotspot' and interdependence of the 'two hits'.

Papadopoulou A., Bicknell D.C., Bodmer W.F., Tomlinson I.P.M.

Proc. Natl. Acad. Sci. U.S.A. 97:3352-3357(2000).

Searching for microsatellite mutations in coding regions in lung, breast, ovarian and colorectal cancers.

Minna J.D.

Oncogene 20:1005-1009(2001).

Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures.

Wolf E., Gabius H.-J.

J. Cancer Res. Clin. Oncol. 127:375-386(2001).

Short tandem repeat profiling provides an international reference standard for human cell lines.

Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.

Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001).

Extensive characterization of genetic alterations in a series of human colorectal cancer cell lines.

Hamelin R.

Oncogene 20:5025-5032(2001).

Immunocytochemical analysis of cell lines derived from solid tumors.

Quentmeier H., Osborn M., Reinhardt J., Zaborski M., Drexler H.G.

J. Histochem. Cytochem. 49:1369-1378(2001).

Spectral karyotype analysis of colon cancer cell lines of the tumor suppressor and mutator pathway.

Koehrle J., Al-Taie O.

Cytogenet. Genome Res. 98:22-28(2002).

HLA class I and II genotype of the NCI-60 cell lines.";

Morse H.C. 3rd, Stroncek D., Marincola F.M.

J. Transl. Med. 3:11.1-11.8(2005).

p53-defective tumors with a functional apoptosome-mediated pathway: a new therapeutic target.

Tomoda H., Yamori T., Tsuruo T.

J. Natl. Cancer Inst. 97:765-777(2005).

Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues.

Garcia-Foncillas J.

Mol. Cancer 5:29.1-29.10(2006).

Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.

Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.

Mol. Cancer Ther. 5:2606-2612(2006).

Mutation analysis of the checkpoint kinase 2 gene in colorectal cancer cell lines.

Liu W.-D., Zhong B.-Y., Zhang Y.-D., Choi G.-S.

Chin. Med. J. 120:2119-2123(2007).

DNA fingerprinting of the NCI-60 cell line panel.";

Chanock S.J., Weinstein J.N.

Mol. Cancer Ther. 8:713-724(2009).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Genomic and biological characterization of exon 4 KRAS mutations in human cancer.

Lash A., Ladanyi M., Saltz L.B., Heguy A., Paty P.B., Solit D.B.

Cancer Res. 70:5901-5911(2010).