HCT 15Homo sapiens (Human)Cancer cell line
Also known as: HCT-15, HCT.15, HCT15, HTC15 (Occasionally.), HTC-15 (Occasionally.)
Quick Overview
HCT 15 is a human colon epithelial cell line used in cancer research.
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_0292 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Colon[UBERON:UBERON_0001155] |
Donor Information
Age | 67 |
---|---|
Age Category | Adult |
Sex | Male |
Subtype Features | MSI |
Disease Information
Disease | Colon adenocarcinoma |
---|---|
Lineage | Bowel |
Subtype | Colon Adenocarcinoma |
OncoTree Code | COAD |
DepMap Information
Source Type | ATCC |
---|---|
Source ID | ACH-000997_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
MutationSimple | APC | p.Arg727Met (c.2180G>T) | Heterozygous | - | from parent cell line HCT 15 |
MutationSimple | APC | p.Lys993Asn (c.2979G>T) | Heterozygous | - | from parent cell line HCT 15 |
MutationSimple | APC | p.Ile1417Leufs*2 (c.4248delC) | Heterozygous | - | from parent cell line HCT 15 |
MutationSimple | APC | p.Arg2166Ter (c.6496C>T) | Heterozygous | - | from parent cell line HCT 15 |
MutationSimple | B2M | c.68-1G>T | Heterozygous | Splice acceptor mutation | from parent cell line HCT 15 |
MutationSimple | B2M | p.Tyr30Ter (c.90C>A) | Heterozygous | - | from parent cell line HCT 15 |
MutationSimple | BRCA2 | p.Cys1200Terfs (c.3599_3600delGT) (3827delGT) | Heterozygous | - | PubMed=15645491 |
MutationSimple | BRCA2 | p.Asn1784Hisfs*7 (c.5350_5351delAA) | Heterozygous | - | from parent cell line KM12 |
MutationSimple | CHEK2 | p.Arg145Trp (c.433C>T) | Heterozygous | - | from parent cell line HCT 15 |
MutationSimple | KRAS | p.Gly13Asp (c.38G>A) | Heterozygous | Somatic | from parent cell line MDA-MB-231 |
MutationSimple | PIK3CA | p.Glu545Lys (c.1633G>A) | Heterozygous | - | from parent cell line MCF-7 |
MutationSimple | PIK3CA | p.Asp549Asn (c.1645G>A) | Heterozygous | - | from parent cell line HCT 15 |
MutationSimple | TP53 | p.Ser241Phe (c.722C>T) | Unspecified | - | PubMed=23851445, PubMed=17260012 |
MutationSimple | TP53 | c.1101-2A>C | Heterozygous | Splice acceptor mutation | from parent cell line HCT 15 |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
5-fluorouracil response in a large panel of colorectal cancer cell lines is associated with mismatch repair deficiency.
Bracht K., Nicholls A.M., Liu Y., Bodmer W.F.
Br. J. Cancer 103:340-346(2010).
Pan-cancer proteomic map of 949 human cell lines.";
Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.
Cancer Cell 40:835-849.e8(2022).
Quantitative proteomics of the Cancer Cell Line Encyclopedia.";
Sellers W.R., Gygi S.P.
Cell 180:387-402.e16(2020).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.
Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.
Nature 568:511-516(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
Differential effector engagement by oncogenic KRAS.";
McCormick F.
Cell Rep. 22:1889-1902(2018).
Genomic determinants of protein abundance variation in colorectal cancer cells.
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Choudhary J.S.
Cell Rep. 20:2201-2214(2017).
Multi-omics of 34 colorectal cancer cell lines -- a resource for biomedical studies.
Myklebost O., Skotheim R.I., Sveen A., Lothe R.A.
Mol. Cancer 16:116.1-116.16(2017).
Characterization of human cancer cell lines by reverse-phase protein arrays.
Liang H.
Cancer Cell 31:225-239(2017).
A novel RNA sequencing data analysis method for cell line authentication.
Uhlen M., Al-Khalili Szigyarto C.
PLoS ONE 12:E0171435-E0171435(2017).
APC mutations as a potential biomarker for sensitivity to tankyrase inhibitors in colorectal cancer.
Nagayama S., Fujita N., Sugimoto Y., Seimiya H.
Mol. Cancer Ther. 16:752-762(2017).
A map of mobile DNA insertions in the NCI-60 human cancer cell panel.
Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.
Mob. DNA 7:20.1-20.11(2016).
A landscape of pharmacogenomic interactions in cancer.";
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
Cell 166:740-754(2016).
Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.
Vandesompele J.
Sci. Data 3:160052-160052(2016).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
N-glycosylation profiling of colorectal cancer cell lines reveals association of fucosylation with differentiation and caudal type homebox 1 (CDX1)/villin mRNA expression.
Tollenaar R.A.E.M., Rombouts Y., Wuhrer M.
Mol. Cell. Proteomics 15:124-140(2016).
Metabolic signatures differentiate ovarian from colon cancer cell lines.
Suhre K., Rafii A.
J. Transl. Med. 13:223.1-223.12(2015).
Highly expressed genes in rapidly proliferating tumor cells as new targets for colorectal cancer treatment.
Sanchez A., Schwartz S. Jr., Bilic J., Mariadason J.M., Arango D.
Clin. Cancer Res. 21:3695-3704(2015).
The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets.
Linnebacher M., Cordero F., Di Nicolantonio F., Bardelli A.
Nat. Commun. 6:7002.1-7002.10(2015).
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).
A comprehensive transcriptional portrait of human cancer cell lines.
Settleman J., Seshagiri S., Zhang Z.-M.
Nat. Biotechnol. 33:306-312(2015).
Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer.
Mariadason J.M., Sieber O.M.
Cancer Res. 74:3238-3247(2014).
High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.
Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.
PLoS ONE 9:E92047-E92047(2014).
The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.
Hirshfield K.M., Oltvai Z.N., Vazquez A.
Cancer Metab. 1:20.1-20.13(2013).
Epigenetic and genetic features of 24 colon cancer cell lines.";
Hektoen M., Lind G.E., Lothe R.A.
Oncogenesis 2:e71.1-e71.8(2013).
Global proteome analysis of the NCI-60 cell line panel.";
Wilhelm M., Kuster B.
Cell Rep. 4:609-620(2013).
The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.
Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.
Cancer Res. 73:4372-4382(2013).
Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.
Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.
Science 336:1040-1044(2012).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
Identification of cancer cell-line origins using fluorescence image-based phenomic screening.
Yoon C.N., Chang Y.-T.
PLoS ONE 7:E32096-E32096(2012).
Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.
Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.
PLoS ONE 7:E31628-E31628(2012).
JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs.
Kong D.-X., Yamori T.
Bioorg. Med. Chem. 20:1947-1951(2012).
Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.
Ambudkar S.V., Gottesman M.M.
Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).
N,N-dimethylformamide-induced alteration of cell culture characteristics and loss of tumorigenicity in cultured human colon carcinoma cells.
Dexter D.L., Barbosa J.A., Calabresi P.
Cancer Res. 39:1020-1025(1979).
Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.
Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.
J. Natl. Cancer Inst. 83:757-766(1991).
Inhibition of the growth of human colon cancer xenografts by polar solvents.
Dexter D.L., Spremulli E.N., Matook G.M., Diamond I., Calabresi P.
Cancer Res. 42:5018-5022(1982).
Activities of purine-metabolizing enzymes in human colon carcinoma cell lines and xenograft tumors.
Rogler-Brown T.L., Calabresi P., Parks R.E. Jr.
Biochem. Pharmacol. 30:793-798(1981).
DLD-1 and HCT-15 cell lines derived separately from colorectal carcinomas have totally different chromosome changes but the same genetic origin.
Chen T.-R., Dorotinsky C.S., McGuire L.J., Macy M.L., Hay R.J.
Cancer Genet. Cytogenet. 81:103-108(1995).
Mutations and altered expression of p16INK4 in human cancer.";
Harris C.C.
Proc. Natl. Acad. Sci. U.S.A. 91:11045-11049(1994).
Beta 2-microglobulin gene mutations: a study of established colorectal cell lines and fresh tumors.
Bicknell D.C., Rowan A.J., Bodmer W.F.
Proc. Natl. Acad. Sci. U.S.A. 91:4751-4755(1994).
Tissue typing the HLA-A locus from genomic DNA by sequence-specific PCR: comparison of HLA genotype and surface expression on colorectal tumor cell lines.
Bodmer W.F.
Proc. Natl. Acad. Sci. U.S.A. 90:2842-2845(1993).
Inverse correlation between RER+ status and p53 mutation in colorectal cancer cell lines.
Thomas G., Hamelin R.
Oncogene 13:2727-2730(1996).
BAT-26, an indicator of the replication error phenotype in colorectal cancers and cell lines.
Hamelin R.
Cancer Res. 57:300-303(1997).
Did the four human cancer cell lines DLD-1, HCT-15, HCT-8, and HRT-18 originate from one and the same patient?
Mareel M.M.
Cancer Genet. Cytogenet. 107:76-79(1998).
Systematic variation in gene expression patterns in human cancer cell lines.
Botstein D., Brown P.O.
Nat. Genet. 24:227-235(2000).
APC mutations in sporadic colorectal tumors: a mutational 'hotspot' and interdependence of the 'two hits'.
Papadopoulou A., Bicknell D.C., Bodmer W.F., Tomlinson I.P.M.
Proc. Natl. Acad. Sci. U.S.A. 97:3352-3357(2000).
Searching for microsatellite mutations in coding regions in lung, breast, ovarian and colorectal cancers.
Minna J.D.
Oncogene 20:1005-1009(2001).
Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures.
Wolf E., Gabius H.-J.
J. Cancer Res. Clin. Oncol. 127:375-386(2001).
Short tandem repeat profiling provides an international reference standard for human cell lines.
Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.
Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001).
Extensive characterization of genetic alterations in a series of human colorectal cancer cell lines.
Hamelin R.
Oncogene 20:5025-5032(2001).
Immunocytochemical analysis of cell lines derived from solid tumors.
Quentmeier H., Osborn M., Reinhardt J., Zaborski M., Drexler H.G.
J. Histochem. Cytochem. 49:1369-1378(2001).
Spectral karyotype analysis of colon cancer cell lines of the tumor suppressor and mutator pathway.
Koehrle J., Al-Taie O.
Cytogenet. Genome Res. 98:22-28(2002).
HLA class I and II genotype of the NCI-60 cell lines.";
Morse H.C. 3rd, Stroncek D., Marincola F.M.
J. Transl. Med. 3:11.1-11.8(2005).
p53-defective tumors with a functional apoptosome-mediated pathway: a new therapeutic target.
Tomoda H., Yamori T., Tsuruo T.
J. Natl. Cancer Inst. 97:765-777(2005).
Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues.
Garcia-Foncillas J.
Mol. Cancer 5:29.1-29.10(2006).
Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.
Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.
Mol. Cancer Ther. 5:2606-2612(2006).
Mutation analysis of the checkpoint kinase 2 gene in colorectal cancer cell lines.
Liu W.-D., Zhong B.-Y., Zhang Y.-D., Choi G.-S.
Chin. Med. J. 120:2119-2123(2007).
DNA fingerprinting of the NCI-60 cell line panel.";
Chanock S.J., Weinstein J.N.
Mol. Cancer Ther. 8:713-724(2009).
Signatures of mutation and selection in the cancer genome.";
Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
Nature 463:893-898(2010).
A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
Haber D.A.
Cancer Res. 70:2158-2164(2010).