HOSHomo sapiens (Human)Cancer cell line

🤖 AI SummaryBased on 16 publications

Quick Overview

Osteosarcoma cell line for cancer research and drug development

Detailed Summary

The HOS cell line is a human osteosarcoma cell line derived from a 13-year-old female patient. It is widely used in cancer research for studying osteosarcoma biology, drug sensitivity, and genetic alterations. HOS cells exhibit complex genomic instability with multiple chromosomal abnormalities, including deletions and amplifications. Research has shown that HOS cells have mutations in the TP53 gene and alterations in the CDKN2A locus, which are critical in tumor progression. These characteristics make HOS a valuable model for investigating osteosarcoma mechanisms and therapeutic strategies.

Research Applications

Cancer researchDrug developmentGenetic studiesTumor biology

Key Characteristics

Complex genomic instabilityTP53 mutationCDKN2A deletionOsteosarcoma model
Generated on 6/15/2025

Basic Information

Database IDCVCL_0312
SpeciesHomo sapiens (Human)
Tissue SourceBone, right femur[UBERON:UBERON_0000981]

Donor Information

Age13
Age CategoryPediatric
SexFemale
Racecaucasian

Disease Information

DiseaseOsteosarcoma
LineageBone
SubtypeOsteosarcoma
OncoTree CodeOS

DepMap Information

Source TypeATCC
Source IDACH-000613_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Arg156Pro (c.467G>C)Unspecified-PubMed=32784519
Gene deletionCDKN2A-HomozygousPossiblePubMed=26870271

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
12
D12S391
20
D13S317
12
D16S539
10,13
D18S51
14
D19S433
13
D21S11
31.2,32.2
D2S1338
24,25
D2S441
10
D3S1358
15
D5S818
13
D6S1043
18
D7S820
11,12
D8S1179
14
FGA
24
Penta D
9,10
Penta E
7,12
SE33
21
TH01
6
TPOX
8,11
vWA
18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Sarcoma cell line screen of oncology drugs and investigational agents identifies patterns associated with gene and microRNA expression.

Harris E., Monks A., Morris J.

Mol. Cancer Ther. 14:2452-2462(2015).

Characterization of the metastatic phenotype of a panel of established osteosarcoma cells.

Luu H.H., Meltzer P.S., Khanna C.

Oncotarget 6:29469-29481(2015).

Integrative analysis reveals relationships of genetic and epigenetic alterations in osteosarcoma.

Myklebost O., Meza-Zepeda L.A.

PLoS ONE 7:E48262-E48262(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Functional characterization of osteosarcoma cell lines provides representative models to study the human disease.

Hogendoorn P.C.W., Llombart-Bosch A., Cleton-Jansen A.-M.

Lab. Invest. 91:1195-1205(2011).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Molecular characterization of commonly used cell lines for bone tumor research: a trans-European EuroBoNet effort.

Buerger H., Aigner T., Gabbert H.E., Poremba C.

Genes Chromosomes Cancer 49:40-51(2010).

Identification of cryptic microaberrations in osteosarcoma by high-definition oligonucleotide array comparative genomic hybridization.

Squire J.A., Zielenska M.

Cancer Genet. Cytogenet. 179:52-61(2007).

Identification of human autologous cytotoxic T-lymphocyte-defined osteosarcoma gene that encodes a transcriptional regulator, papillomavirus binding factor.

Nagoya S., Wada T., Yamashita T., Sato N.

Cancer Res. 64:5442-5448(2004).

Expression profiling of t(12;22) positive clear cell sarcoma of soft tissue cell lines reveals characteristic up-regulation of potential new marker genes including ERBB3.

Gabbert H.E., Poremba C.

Cancer Res. 64:3395-3405(2004).

Chromosomal alterations in osteosarcoma cell lines revealed by comparative genomic hybridization and multicolor karyotyping.

Poremba C.

Cancer Genet. Cytogenet. 140:145-152(2003).

Differential expression of the amv gene in human hematopoietic cells.

Aaronson S.A., Wong-Staal F.

Proc. Natl. Acad. Sci. U.S.A. 79:2194-2198(1982).

Rearrangement of the p53 gene in human osteogenic sarcomas.";

Masuda H., Miller C., Koeffler H.P., Battifora H.A., Cline M.J.

Proc. Natl. Acad. Sci. U.S.A. 84:7716-7719(1987).

Synergistic killing of virus-transformed human cells with interferon and N-methyl-N'-nitro-N-nitrosoguanidine.

Babich M.A., Day R.S. 3rd

Carcinogenesis 10:265-268(1989).

p53 functions as a cell cycle control protein in osteosarcomas.";

Bressac B., Ozturk M., Baker S.J., Vogelstein B., Friend S.H.

Mol. Cell. Biol. 10:5772-5781(1990).

Platelet-derived growth factor (PDGF) receptor activation in cell transformation and human malignancy.

Fleming T.P., Matsui T., Aaronson S.A.

Exp. Gerontol. 27:523-532(1992).