HPAF-IIHomo sapiens (Human)Cancer cell line

Also known as: CD 18, CD18, CD-18, HPAF-II/CD18, CD18/HPAF, HPAF/CD18, HPAF2, HPAF-2, HPAFII, HPAF II, HPAF11, Hapaf-II (Occasionally.)

🤖 AI SummaryBased on 13 publications

Quick Overview

HPAF-II is a human pancreatic ductal adenocarcinoma cell line used for studying epithelial polarity and junctional complexes.

Detailed Summary

HPAF-II is a well-differentiated human pancreatic adenocarcinoma cell line that maintains apical-basal polarity and junctional complexes in culture. It exhibits tight junctions, adherens junctions, and desmosomes, making it a valuable model for understanding epithelial cell structure and function. The cell line is utilized in research related to pancreatic cancer, particularly in studies involving cell polarity, tight junction function, and epithelial cell biology. HPAF-II has been used to investigate the molecular mechanisms underlying epithelial polarity and the regulation of junctional complexes, providing insights into disease processes such as adenocarcinoma and pancreatitis.

Research Applications

Epithelial polarity studiesTight junction functionAdherens junction analysisDesmosome characterizationPancreatic cancer research

Key Characteristics

Maintains apical-basal polarityExpresses tight junction proteins (ZO-1, occludin, claudin-4)Contains adherens junctions (E-cadherin, β-catenin)Displays desmosomal structures (desmocollin)Functional transepithelial resistance
Generated on 6/15/2025

Basic Information

Database IDCVCL_0313
SpeciesHomo sapiens (Human)
Tissue SourceAscites[UBERON:UBERON_0007795]

Donor Information

Age44
Age CategoryAdult
SexMale
Racecaucasian

Disease Information

DiseasePancreatic ductal adenocarcinoma
LineagePancreas
SubtypePancreatic Adenocarcinoma
OncoTree CodePAAD

DepMap Information

Source TypeATCC
Source IDACH-000094_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Pro151Ser (c.451C>T)UnspecifiedSomatic mutation acquired during proliferationPubMed=28445466
MutationSimpleKRASp.Gly12Asp (c.35G>A)Unspecified-PubMed=29786757
MutationSimpleCDKN2Ap.Arg29_Ala34del (c.85_102del18)Heterozygous-from parent cell line HPAF

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10,11
D13S317
12
D16S539
11,13
D18S51
13
D19S433
12
D21S11
30,31
D2S1338
16,19
D3S1358
14,18
D5S818
11,13
D7S820
10,13
D8S1179
11,12
F13A01
5,17
F13B
8,10
FESFPS
11,12
FGA
21,24
LPL
10
Penta D
9,13
Penta E
10,13
TH01
9
TPOX
8
vWA
17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Unraveling altered RNA metabolism in pancreatic cancer cells by liquid-chromatography coupling to ion mobility mass spectrometry.

Wittel U.A., Kammerer B.

Anal. Bioanal. Chem. 411:6319-6328(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Differential effector engagement by oncogenic KRAS.";

McCormick F.

Cell Rep. 22:1889-1902(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Resolution of novel pancreatic ductal adenocarcinoma subtypes by global phosphotyrosine profiling.

Biankin A.V., Wu J.-M., Daly R.J.

Mol. Cell. Proteomics 15:2671-2685(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors.

Manning G., Settleman J., Hatzivassiliou G., Evangelista M.

Proc. Natl. Acad. Sci. U.S.A. 112:E4410-E4417(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Essential gene profiles in breast, pancreatic, and ovarian cancer cells.

Rottapel R., Neel B.G., Moffat J.

Cancer Discov. 2:172-189(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Phenotype and genotype of pancreatic cancer cell lines.";

Scaife C.L., Firpo M.A., Mulvihill S.J.

Pancreas 39:425-435(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Identification of SMURF1 as a possible target for 7q21.3-22.1 amplification detected in a pancreatic cancer cell line by in-house array-based comparative genomic hybridization.

Shiratori K., Hirohashi S., Inazawa J., Imoto I.

Cancer Sci. 99:986-994(2008).

HPAF-II, a cell culture model to study pancreatic epithelial cell structure and function.

Schneeberger E.E., Rajasekaran A.K.

Pancreas 29:e77-e83(2004).

Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity.

Hirohashi S.

Pancreas 29:193-203(2004).

Genome-wide array-based comparative genomic hybridization reveals multiple amplification targets and novel homozygous deletions in pancreatic carcinoma cell lines.

Veltman J.A., van Kessel A.G., Hoglund M.

Cancer Res. 64:3052-3059(2004).

A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform.

Sipos B., Moser S., Kalthoff H., Torok V., Lohr J.-M., Kloppel G.

Virchows Arch. 442:444-452(2003).

Mutations of the BRAF gene in human cancer.";

Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.

Nature 417:949-954(2002).

Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4.

Lohr J.-M., Scarpa A.

Virchows Arch. 439:798-802(2001).

Characterization of clones of a human pancreatic adenocarcinoma cell line representing different stages of differentiation.

Kim Y.W., Kern H.F., Mullins T.D., Koriwchak M.J., Metzgar R.S.

Pancreas 4:353-362(1989).

Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer.

Lane D.P., Lemoine N.R.

Br. J. Cancer 64:1076-1082(1991).

The proteomic profile of pancreatic cancer cell lines corresponding to carcinogenesis and metastasis.

Yamada M., Fujii K., Koyama K., Hirohashi S., Kondo T.

J. Proteomics Bioinformatics 2:1-18(2009).