HPAF-IIHomo sapiens (Human)Cancer cell line
Also known as: CD 18, CD18, CD-18, HPAF-II/CD18, CD18/HPAF, HPAF/CD18, HPAF2, HPAF-2, HPAFII, HPAF II, HPAF11, Hapaf-II (Occasionally.)
Quick Overview
HPAF-II is a human pancreatic ductal adenocarcinoma cell line used for studying epithelial polarity and junctional complexes.
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_0313 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Ascites[UBERON:UBERON_0007795] |
Donor Information
Age | 44 |
---|---|
Age Category | Adult |
Sex | Male |
Race | caucasian |
Disease Information
Disease | Pancreatic ductal adenocarcinoma |
---|---|
Lineage | Pancreas |
Subtype | Pancreatic Adenocarcinoma |
OncoTree Code | PAAD |
DepMap Information
Source Type | ATCC |
---|---|
Source ID | ACH-000094_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
MutationSimple | TP53 | p.Pro151Ser (c.451C>T) | Unspecified | Somatic mutation acquired during proliferation | PubMed=28445466 |
MutationSimple | KRAS | p.Gly12Asp (c.35G>A) | Unspecified | - | PubMed=29786757 |
MutationSimple | CDKN2A | p.Arg29_Ala34del (c.85_102del18) | Heterozygous | - | from parent cell line HPAF |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
Unraveling altered RNA metabolism in pancreatic cancer cells by liquid-chromatography coupling to ion mobility mass spectrometry.
Wittel U.A., Kammerer B.
Anal. Bioanal. Chem. 411:6319-6328(2019).
Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.
Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.
Nature 568:511-516(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
Differential effector engagement by oncogenic KRAS.";
McCormick F.
Cell Rep. 22:1889-1902(2018).
Characterization of human cancer cell lines by reverse-phase protein arrays.
Liang H.
Cancer Cell 31:225-239(2017).
A landscape of pharmacogenomic interactions in cancer.";
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
Cell 166:740-754(2016).
Resolution of novel pancreatic ductal adenocarcinoma subtypes by global phosphotyrosine profiling.
Biankin A.V., Wu J.-M., Daly R.J.
Mol. Cell. Proteomics 15:2671-2685(2016).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors.
Manning G., Settleman J., Hatzivassiliou G., Evangelista M.
Proc. Natl. Acad. Sci. U.S.A. 112:E4410-E4417(2015).
Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.
Golub T.R., Root D.E., Hahn W.C.
Sci. Data 1:140035-140035(2014).
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).
A comprehensive transcriptional portrait of human cancer cell lines.
Settleman J., Seshagiri S., Zhang Z.-M.
Nat. Biotechnol. 33:306-312(2015).
Essential gene profiles in breast, pancreatic, and ovarian cancer cells.
Rottapel R., Neel B.G., Moffat J.
Cancer Discov. 2:172-189(2012).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
Phenotype and genotype of pancreatic cancer cell lines.";
Scaife C.L., Firpo M.A., Mulvihill S.J.
Pancreas 39:425-435(2010).
A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
Haber D.A.
Cancer Res. 70:2158-2164(2010).
Signatures of mutation and selection in the cancer genome.";
Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
Nature 463:893-898(2010).
Identification of SMURF1 as a possible target for 7q21.3-22.1 amplification detected in a pancreatic cancer cell line by in-house array-based comparative genomic hybridization.
Shiratori K., Hirohashi S., Inazawa J., Imoto I.
Cancer Sci. 99:986-994(2008).
HPAF-II, a cell culture model to study pancreatic epithelial cell structure and function.
Schneeberger E.E., Rajasekaran A.K.
Pancreas 29:e77-e83(2004).
Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity.
Hirohashi S.
Pancreas 29:193-203(2004).
Genome-wide array-based comparative genomic hybridization reveals multiple amplification targets and novel homozygous deletions in pancreatic carcinoma cell lines.
Veltman J.A., van Kessel A.G., Hoglund M.
Cancer Res. 64:3052-3059(2004).
A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform.
Sipos B., Moser S., Kalthoff H., Torok V., Lohr J.-M., Kloppel G.
Virchows Arch. 442:444-452(2003).
Mutations of the BRAF gene in human cancer.";
Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.
Nature 417:949-954(2002).
Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4.
Lohr J.-M., Scarpa A.
Virchows Arch. 439:798-802(2001).
Characterization of clones of a human pancreatic adenocarcinoma cell line representing different stages of differentiation.
Kim Y.W., Kern H.F., Mullins T.D., Koriwchak M.J., Metzgar R.S.
Pancreas 4:353-362(1989).
Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer.
Lane D.P., Lemoine N.R.
Br. J. Cancer 64:1076-1082(1991).
The proteomic profile of pancreatic cancer cell lines corresponding to carcinogenesis and metastasis.
Yamada M., Fujii K., Koyama K., Hirohashi S., Kondo T.
J. Proteomics Bioinformatics 2:1-18(2009).