HT-144Homo sapiens (Human)Cancer cell line

Also known as: HT144mel, HT144-mel, HT144, HT 144, HT-114

🤖 AI SummaryBased on 14 publications

Quick Overview

Human melanoma cell line with BRAF mutations and potential for cancer research.

Detailed Summary

HT-144 is a human melanoma cell line derived from a melanoma tumor. It is characterized by the presence of BRAF mutations, which are known to play a significant role in the activation of the MAPK signaling pathway, a key driver in melanoma progression. These mutations contribute to the uncontrolled cell proliferation and resistance to apoptosis, making HT-144 a valuable model for studying the molecular mechanisms of melanoma. The cell line is also used in research to identify potential therapeutic targets and to evaluate the efficacy of targeted therapies, particularly those aimed at the BRAF and MEK pathways. Additionally, HT-144 has been utilized in studies examining the role of immune checkpoint inhibitors and the development of personalized treatment strategies for melanoma patients.

Research Applications

Cancer researchBRAF mutation analysisMAPK pathway studiesTargeted therapy developmentImmune checkpoint inhibitor testing

Key Characteristics

BRAF mutationsMAPK pathway activationPotential for targeted therapy research
Generated on 6/15/2025

Basic Information

Database IDCVCL_0318
SpeciesHomo sapiens (Human)
Tissue SourceHypodermis[UBERON:UBERON_0002072]

Donor Information

Age29
Age CategoryAdult
SexMale
Racecaucasian

Disease Information

DiseaseMelanoma
LineageSkin
SubtypeMelanoma
OncoTree CodeMEL

DepMap Information

Source TypeATCC
Source IDACH-000322_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTERTc.1-124C>T (c.228C>T) (C228T)UnspecifiedIn promoterfrom parent cell line Hep-G2
MutationSimpleBRAFp.Val600Glu (c.1799T>A)Unspecified-PubMed=26214590
Gene deletionPTEN-Hemizygous-Wistar
Gene deletionCDKN2A-HomozygousPossiblePubMed=26870271

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X,Y
CSF1PO
12
D13S317
11,12
D16S539
12,13
D18S51
15
D19S433
12,16
D21S11
30,31.2
D2S1338
23,25
D3S1358
14,15
D5S818
11,13
D7S820
11
D8S1179
13,15
FGA
23,26
Penta D
9,11
Penta E
11,12
TH01
6,9
TPOX
8,11
vWA
16,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Combinatorial drug screening and molecular profiling reveal diverse mechanisms of intrinsic and adaptive resistance to BRAF inhibition in V600E BRAF mutant melanomas.

Petricoin E.F. 3rd, Gioeli D., Weber M.J.

Oncotarget 7:2734-2753(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Systems analysis of adaptive responses to MAP kinase pathway blockade in BRAF mutant melanoma.

Slingluff C.L. Jr., Weber M.J., Mackey A.J., Gioeli D., Bekiranov S.

PLoS ONE 10:E0138210-E0138210(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

A high-throughput panel for identifying clinically relevant mutation profiles in melanoma.

Scolyer R.A., Mann G.J., Schmidt C.W., Herington A., Hayward N.K.

Mol. Cancer Ther. 11:888-897(2012).

Comprehensive analysis of receptor tyrosine kinase activation in human melanomas reveals autocrine signaling through IGF-1R.

Brautigan D.L., Slingluff C.L. Jr.

Melanoma Res. 21:274-284(2011).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Confirmation of a BRAF mutation-associated gene expression signature in melanoma.

Johansson P., Pavey S., Hayward N.K.

Pigment Cell Res. 20:216-221(2007).

Genome-wide loss of heterozygosity and copy number analysis in melanoma using high-density single-nucleotide polymorphism arrays.

Stark M.S., Hayward N.K.

Cancer Res. 67:2632-2642(2007).

Involvement of overexpressed wild-type BRAF in the growth of malignant melanoma cell lines.

Yasui K., Misawa-Furihata A., Kawakami Y., Inazawa J.

Oncogene 23:8796-8804(2004).

Microarray expression profiling in melanoma reveals a BRAF mutation signature.

Meltzer P.S., Ringner M., Hayward N.K.

Oncogene 23:4060-4067(2004).

Identification of novel and widely expressed cancer/testis gene isoforms that elicit spontaneous cytotoxic T-lymphocyte reactivity to melanoma.

Hunt D.F., Engelhard V.H., Ross M.M., Slingluff C.L. Jr.

Cancer Res. 64:1157-1163(2004).

Characterization of human melanoma cell lines according to their migratory properties in vitro.

Quinones L.G., Garcia-Castro I.

In Vitro Cell. Dev. Biol. Anim. 40:35-42(2004).

Mutations of the BRAF gene in human cancer.";

Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.

Nature 417:949-954(2002).

Multiple abnormalities of the p16INK4a-pRb regulatory pathway in cultured melanoma cells.

Mann G.J.

Melanoma Res. 9:10-19(1999).

Melanomas with concordant loss of multiple melanocytic differentiation proteins: immune escape that may be overcome by targeting unique or undefined antigens.

Darrow T.L., Engelhard V.H.

Cancer Immunol. Immunother. 48:661-672(2000).

CDKN2A/p16 is inactivated in most melanoma cell lines.";

Gabrielli B.G., Parsons P.G., Hayward N.K.

Cancer Res. 57:4868-4875(1997).

Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins.

Rousset M., Zweibaum A., Fogh J.

Cancer Res. 41:1165-1170(1981).

HLA-A, B, C and DR alloantigen expression on forty-six cultured human tumor cell lines.

Pollack M.S., Heagney S.D., Livingston P.O., Fogh J.

J. Natl. Cancer Inst. 66:1003-1012(1981).

Distinction of seventy-one cultured human tumor cell lines by polymorphic enzyme analysis.

Wright W.C., Daniels W.P., Fogh J.

J. Natl. Cancer Inst. 66:239-247(1981).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Absence of HeLa cell contamination in 169 cell lines derived from human tumors.

Fogh J., Wright W.C., Loveless J.D.

J. Natl. Cancer Inst. 58:209-214(1977).

One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.

Fogh J., Fogh J.M., Orfeo T.

J. Natl. Cancer Inst. 59:221-226(1977).

Membrane associated antigens of human malignant melanoma V: Serological typing of cell lines using antisera from nonhuman primates.

Bruggen J., Sorg C., Macher E.

Cancer Immunol. Immunother. 5:53-62(1978).

New human tumor cell lines.";

Fogh J., Trempe G.L.

(In book chapter) Human tumor cells in vitro; Fogh J. (eds.); pp.115-159; Springer; New York; USA (1975).