HT-29Homo sapiens (Human)Cancer cell line

Also known as: HT 29, HT29, HCT29

🤖 AI SummaryBased on 13 publications

Quick Overview

Human colon adenocarcinoma cell line used in cancer research and drug testing.

Detailed Summary

HT-29 is a human colon adenocarcinoma cell line derived from a 44-year-old female patient. It is widely used in cancer research for studying the biology of colon cancers and has been utilized in various studies related to drug sensitivity, protein expression, and genetic mutations. HT-29 cells can form a monolayer with tight junctions and exhibit characteristics of mature intestinal cells, making them valuable for studying intestinal functions and drug absorption. The cell line has been involved in research on the effects of APC mutations on tankyrase inhibitor sensitivity and has been used in proteomic and genomic studies to understand cancer mechanisms. HT-29 is also used in studies related to the impact of genetic variations on drug responses and in the development of therapeutic strategies.

Research Applications

Cancer biology researchDrug sensitivity testingProteomic and genomic studiesIntestinal function studiesAPC mutation analysisGenetic variation impact on drug response

Key Characteristics

Expresses mature intestinal cell characteristicsForms monolayer with tight junctionsUsed in studies of APC mutations and tankyrase inhibitorsUtilized in proteomic and genomic profilingRelevant for drug development and therapeutic strategies
Generated on 6/15/2025

Basic Information

Database IDCVCL_0320
SpeciesHomo sapiens (Human)
Tissue SourceColon[UBERON:UBERON_0001155]

Donor Information

Age44
Age CategoryAdult
SexFemale
Racecaucasian

Disease Information

DiseaseColon adenocarcinoma
LineageBowel
SubtypeColon Adenocarcinoma
OncoTree CodeCOAD

DepMap Information

Source TypeATCC
Source IDACH-000552_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleAPCp.Glu853Ter (c.2557G>T)Heterozygous-from parent cell line WiDr
MutationSimpleAPCp.Thr1556Asnfs*3 (c.4666dupA) (c.4666_4667insA)Heterozygous-from parent cell line WiDr
MutationSimpleBRAFp.Val600Glu (c.1799T>A)Unspecified-PubMed=26214590
MutationSimplePIK3CAp.Pro449Thr (c.1345C>A)Heterozygous-from parent cell line WiDr
MutationSimpleSMAD4p.Gln311Ter (c.931C>T)Homozygous-from parent cell line WiDr
MutationSimpleTP53p.Arg273His (c.818G>A)Homozygous-Unknown, PubMed=16264262

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
11,12
D10S1248
14,16
D12S391
18.3,21
D13S317
11
D16S539
11,12
D18S51
13
D19S433
14
D1S1656
15,16
D21S11
29,30
D22S1045
16
D2S1338
19,23
D2S441
11
D3S1358
15,17
D5S818
11,12
D7S820
10
D8S1179
10
FGA
20,22
Penta D
11,13
Penta E
14,16
TH01
6,9
TPOX
8,9
vWA
17,19
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures.

Wolf E., Gabius H.-J.

J. Cancer Res. Clin. Oncol. 127:375-386(2001).

Characterisation of colorectal cancer cell lines through proteomic profiling of their extracellular vesicles.

Flobak A., Laegreid A., Thommesen L.

Proteomes 11:3.1-3.20(2023).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Culture of SARS-CoV-2 in a panel of laboratory cell lines, permissivity, and differences in growth profile.

Wurtz N., Penant G., Jardot P., Duclos N., La Scola B.

Eur. J. Clin. Microbiol. Infect. Dis. 40:477-484(2021).

Isolation and characterization of two novel colorectal cancer cell lines, containing a subpopulation with potential stem-like properties: treatment options by MYC/NMYC inhibition.

Forster C., Wilkens L., Kruger M., Kaltschmidt B., Kaltschmidt C.

Cancers (Basel) 12:2582.1-2582.34(2020).

Comparison of different colorectal cancer with liver metastases models using six colorectal cancer cell lines.

Xu Y.-T., Zhang L., Wang Q.-L., Zheng M.-J.

Pathol. Oncol. Res. 26:2177-2183(2020).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

HT29 cell line.";

Martinez-Maqueda D., Miralles B., Recio I.

(In book chapter) The impact of food bioactives on health. In vitro and ex vivo models; Verhoeckx K., Cotter P., Lopez-Exposito I., Kleiveland C., Lea T., Mackie A., Requena T., Swiatecka D., Wichers H. (eds.); pp.113-124; Springer; Cham; Switzerland (2015).

In vitro characterization of spheres derived from colorectal cancer cell lines.

Olejniczak A., Szarynska M., Kmiec Z.

Int. J. Oncol. 52:599-612(2018).

Pharmacoproteomic characterisation of human colon and rectal cancer.

Weichert W., Knapp S., Feller S.M., Kuster B.

Mol. Syst. Biol. 13:951-951(2017).

Genomic determinants of protein abundance variation in colorectal cancer cells.

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Choudhary J.S.

Cell Rep. 20:2201-2214(2017).

Multi-omics of 34 colorectal cancer cell lines -- a resource for biomedical studies.

Myklebost O., Skotheim R.I., Sveen A., Lothe R.A.

Mol. Cancer 16:116.1-116.16(2017).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A novel RNA sequencing data analysis method for cell line authentication.

Uhlen M., Al-Khalili Szigyarto C.

PLoS ONE 12:E0171435-E0171435(2017).

APC mutations as a potential biomarker for sensitivity to tankyrase inhibitors in colorectal cancer.

Nagayama S., Fujita N., Sugimoto Y., Seimiya H.

Mol. Cancer Ther. 16:752-762(2017).

A map of mobile DNA insertions in the NCI-60 human cancer cell panel.

Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.

Mob. DNA 7:20.1-20.11(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.

Vandesompele J.

Sci. Data 3:160052-160052(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

N-glycosylation profiling of colorectal cancer cell lines reveals association of fucosylation with differentiation and caudal type homebox 1 (CDX1)/villin mRNA expression.

Tollenaar R.A.E.M., Rombouts Y., Wuhrer M.

Mol. Cell. Proteomics 15:124-140(2016).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

Highly expressed genes in rapidly proliferating tumor cells as new targets for colorectal cancer treatment.

Sanchez A., Schwartz S. Jr., Bilic J., Mariadason J.M., Arango D.

Clin. Cancer Res. 21:3695-3704(2015).

The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets.

Linnebacher M., Cordero F., Di Nicolantonio F., Bardelli A.

Nat. Commun. 6:7002.1-7002.10(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

Feasibility of label-free phosphoproteomics and application to base-line signaling of colorectal cancer cell lines.

Pham T.V., Ishihama Y., Verheul H.M.W., Jimenez C.R.

J. Proteomics 127:247-258(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer.

Mariadason J.M., Sieber O.M.

Cancer Res. 74:3238-3247(2014).

High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.

Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.

PLoS ONE 9:E92047-E92047(2014).

The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.

Hirshfield K.M., Oltvai Z.N., Vazquez A.

Cancer Metab. 1:20.1-20.13(2013).

Epigenetic and genetic features of 24 colon cancer cell lines.";

Hektoen M., Lind G.E., Lothe R.A.

Oncogenesis 2:e71.1-e71.8(2013).

Global proteome analysis of the NCI-60 cell line panel.";

Wilhelm M., Kuster B.

Cell Rep. 4:609-620(2013).

Identification of a microRNA expression signature for chemoradiosensitivity of colorectal cancer cells, involving miRNAs-320a, -224, -132 and let7g.

Grade M., Gaedcke J.

Radiother. Oncol. 108:451-457(2013).

The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.

Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.

Cancer Res. 73:4372-4382(2013).

Global metabolite profiling of human colorectal cancer xenografts in mice using HPLC-MS/MS.

Barnes A.J.

J. Proteome Res. 12:2980-2986(2013).

Acquired irinotecan resistance is accompanied by stable modifications of cell cycle dynamics independent of MSI status.

Guerin E., Escargueil A.E., Larsen A.K.

Int. J. Oncol. 42:1644-1653(2013).

Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines.

Orphanides G., French T., Wessels L.F.A.

BMC Med. Genomics 5:66.1-66.15(2012).

Epigenetic regulation of the 1,25-dihydroxyvitamin D3 24-hydroxylase (CYP24A1) in colon cancer cells.

Hobaus J., Fetahu I.S., Khorchide M., Manhardt T., Kallay E.

J. Steroid Biochem. Mol. Biol. 136:296-299(2013).

Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.

Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.

Science 336:1040-1044(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Identification of cancer cell-line origins using fluorescence image-based phenomic screening.

Yoon C.N., Chang Y.-T.

PLoS ONE 7:E32096-E32096(2012).

Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.

Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.

PLoS ONE 7:E31628-E31628(2012).

JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs.

Kong D.-X., Yamori T.

Bioorg. Med. Chem. 20:1947-1951(2012).

Human tumor cell strains defective in the repair of alkylation damage.

Mattern M.R.

Carcinogenesis 1:21-32(1980).

Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.

Ambudkar S.V., Gottesman M.M.

Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).

Therapeutic reactivation of mutant p53 protein by quinazoline derivatives.

Ding A., Baguley B.C.

Invest. New Drugs 30:2035-2045(2012).

Human embryonic stem cells and metastatic colorectal cancer cells shared the common endogenous human microRNA-26b.

Peng J.-Y., Chen H.-Q., Zhou Y.-K., Liu W.-J., Qin H.-L.

J. Cell. Mol. Med. 15:1941-1954(2011).

5-fluorouracil response in a large panel of colorectal cancer cell lines is associated with mismatch repair deficiency.

Bracht K., Nicholls A.M., Liu Y., Bodmer W.F.

Br. J. Cancer 103:340-346(2010).

Genomic and biological characterization of exon 4 KRAS mutations in human cancer.

Lash A., Ladanyi M., Saltz L.B., Heguy A., Paty P.B., Solit D.B.

Cancer Res. 70:5901-5911(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Rapid characterisation of cell cultures by matrix-assisted laser desorption/ionisation mass spectrometric typing.

Karger A., Bettin B., Lenk M., Mettenleiter T.C.

J. Virol. Methods 164:116-121(2010).

Definitive molecular cytogenetic characterization of 15 colorectal cancer cell lines.

Camps J., McNeil N.E., Difilippantonio M.J., Ried T.

Genes Chromosomes Cancer 49:204-223(2010).

DNA fingerprinting of the NCI-60 cell line panel.";

Chanock S.J., Weinstein J.N.

Mol. Cancer Ther. 8:713-724(2009).

Cell growth, global phosphotyrosine elevation, and c-Met phosphorylation through Src family kinases in colorectal cancer cells.

Emaduddin M., Bicknell D.C., Bodmer W.F., Feller S.M.

Proc. Natl. Acad. Sci. U.S.A. 105:2358-2362(2008).

Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.

Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.

Mol. Cancer Ther. 5:2606-2612(2006).

Global phosphoproteome of HT-29 human colon adenocarcinoma cells.";

Kim J.-E., Tannenbaum S.R., White F.M.

J. Proteome Res. 4:1339-1346(2005).

p53-defective tumors with a functional apoptosome-mediated pathway: a new therapeutic target.

Tomoda H., Yamori T., Tsuruo T.

J. Natl. Cancer Inst. 97:765-777(2005).

HLA class I and II genotype of the NCI-60 cell lines.";

Morse H.C. 3rd, Stroncek D., Marincola F.M.

J. Transl. Med. 3:11.1-11.8(2005).

Mutations of the BRAF gene in human cancer.";

Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.

Nature 417:949-954(2002).

Comprehensive karyotyping of the HT-29 colon adenocarcinoma cell line.

Kawai K., Viars C., Arden K.C., Tarin D., Urquidi V., Goodison S.

Genes Chromosomes Cancer 34:1-8(2002).

Assembly of microarrays for genome-wide measurement of DNA copy number.

Pinkel D., Albertson D.G.

Nat. Genet. 29:263-264(2001).

Immunocytochemical analysis of cell lines derived from solid tumors.

Quentmeier H., Osborn M., Reinhardt J., Zaborski M., Drexler H.G.

J. Histochem. Cytochem. 49:1369-1378(2001).

Extensive characterization of genetic alterations in a series of human colorectal cancer cell lines.

Hamelin R.

Oncogene 20:5025-5032(2001).

Short tandem repeat profiling provides an international reference standard for human cell lines.

Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.

Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001).

New human tumor cell lines.";

Fogh J., Trempe G.L.

(In book chapter) Human tumor cells in vitro; Fogh J. (eds.); pp.115-159; Springer; New York; USA (1975).

In vitro immunization against human tumor cells with tumor cell fractions.

Sharma B.

Cancer Res. 37:4660-4668(1977).

Tissue typing of cells in culture. III. HLA antigens of established human cell lines. Attempts at typing by the mixed hemadsorption technique.

Espmark J.A., Ahlqvist-Roth L., Sarne L., Persson A.

Tissue Antigens 11:279-286(1978).

One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.

Fogh J., Fogh J.M., Orfeo T.

J. Natl. Cancer Inst. 59:221-226(1977).

Growth enhancing property of human monocytes from normal donors and cancer patients.

Trejdosiewicz L.K., Trejdosiewicz A.J., Ling N.R., Dykes P.W.

Immunology 37:247-252(1979).

Differential repair of 1-(2-chloroethyl)-3-(4-methylcyclohexyl)-1- nitrosourea-induced DNA damage in two human colon tumor cell lines.

Erickson L.C., Osieka R., Kohn K.W.

Cancer Res. 38:802-808(1978).

Absence of HeLa cell contamination in 169 cell lines derived from human tumors.

Fogh J., Wright W.C., Loveless J.D.

J. Natl. Cancer Inst. 58:209-214(1977).

Markers of neoplastic transformation in epithelial cell lines derived from human carcinomas.

Marshall C.J., Franks L.M., Carbonell A.W.

J. Natl. Cancer Inst. 58:1743-1751(1977).

Immunohistology of the antigenic pattern of a continuous cell line from a human colon tumor.

von Kleist S., Chany E., Burtin P., King M., Fogh J.

J. Natl. Cancer Inst. 55:555-560(1975).

Growth stimulation of a human colorectal carcinoma cell line by interleukin-1 and -6 and antagonistic effects of transforming growth factor beta 1.

Lorenzoni M., Givel J.-C., Odartchenko N.

Eur. J. Cancer 28A:1894-1899(1992).

Morphologic differentiation of colon carcinoma cell lines HT-29 and HT-29KM in rotating-wall vessels.

Goodwin T.J., Jessup J.M., Wolf D.A.

In Vitro Cell. Dev. Biol. Anim. 28:47-60(1992).

Aberrant elevation of tyrosine-specific phosphorylation in human gastric cancer cells.

Ohnishi Y., Xiao H.-Y., Nagai Y., Takagi H.

Jpn. J. Cancer Res. 82:1428-1435(1991).

Adaptation to 5-fluorouracil of the heterogeneous human colon tumor cell line HT-29 results in the selection of cells committed to differentiation.

Beaumatin J., Dussaulx E., Dutrillaux B., Zweibaum A.

Int. J. Cancer 49:721-730(1991).

Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.

Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.

J. Natl. Cancer Inst. 83:757-766(1991).

Transforming growth factor beta 1 acts as an autocrine-negative growth regulator in colon enterocytic differentiation but not in goblet cell maturation.

Hafez M.M., Infante D., Winawer S.J., Friedman E.

Cell Growth Differ. 1:617-626(1990).

Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.

Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.

Cancer Res. 48:589-601(1988).

Epithelial polarity, villin expression, and enterocytic differentiation of cultured human colon carcinoma cells: a survey of twenty cell lines.

Chantret I., Barbat A., Dussaulx E., Brattain M.G., Zweibaum A.

Cancer Res. 48:1936-1942(1988).

WiDr is a derivative of another colon adenocarcinoma cell line, HT-29.";

Chen T.-R., Drabkowski D.J., Hay R.J., Macy M.L., Peterson W.D. Jr.

Cancer Genet. Cytogenet. 27:125-134(1987).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Polymorphic enzyme analysis of cultured human tumor cell lines.";

Dracopoli N.C., Fogh J.

J. Natl. Cancer Inst. 70:469-476(1983).

Defective repair of alkylated DNA by human tumour and SV40-transformed human cell strains.

Lubiniecki A.S., Girardi A.J., Galloway S.M., Bynum G.D.

Nature 288:724-727(1980).

Isolation of a cellular subpopulation from a human colonic carcinoma cell line.

Kimball P.M., Brattain M.G.

Cancer Res. 40:1574-1579(1980).

Relationship between karyotype of tissue culture lines and tumorigenicity in nude mice.

Gershwin M.E., Lentz D., Owens R.B.

Exp. Cell Biol. 52:361-370(1984).

Cell surface antigens of human ovarian and endometrial carcinoma defined by mouse monoclonal antibodies.

Mattes M.J., Cordon-Cardo C., Lewis J.L. Jr., Old L.J., Lloyd K.O.

Proc. Natl. Acad. Sci. U.S.A. 81:568-572(1984).

Repair of O6-methylguanine in DNA by demethylation is lacking in Mer- human tumor cell strains.

Yarosh D.B., Foote R.S., Mitra S., Day R.S. 3rd

Carcinogenesis 4:199-205(1983).

HLA-A, B, C and DR alloantigen expression on forty-six cultured human tumor cell lines.

Pollack M.S., Heagney S.D., Livingston P.O., Fogh J.

J. Natl. Cancer Inst. 66:1003-1012(1981).

Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins.

Rousset M., Zweibaum A., Fogh J.

Cancer Res. 41:1165-1170(1981).

Increased incidence of p53 mutations is associated with hepatic metastasis in colorectal neoplastic progression.

Steele G., Summerhayes I.C.

Oncogene 11:647-652(1995).

Mutations and altered expression of p16INK4 in human cancer.";

Harris C.C.

Proc. Natl. Acad. Sci. U.S.A. 91:11045-11049(1994).

Tissue typing the HLA-A locus from genomic DNA by sequence-specific PCR: comparison of HLA genotype and surface expression on colorectal tumor cell lines.

Bodmer W.F.

Proc. Natl. Acad. Sci. U.S.A. 90:2842-2845(1993).

Radio-induced modulation of transforming growth factor beta1 sensitivity in a p53 wild-type human colorectal-cancer cell line.

Suardet L., Li C., Little J.B.

Int. J. Cancer 68:126-131(1996).

Inverse correlation between RER+ status and p53 mutation in colorectal cancer cell lines.

Thomas G., Hamelin R.

Oncogene 13:2727-2730(1996).

BAT-26, an indicator of the replication error phenotype in colorectal cancers and cell lines.

Hamelin R.

Cancer Res. 57:300-303(1997).

Beta-catenin mutations in cell lines established from human colorectal cancers.

Ilyas M., Tomlinson I.P.M., Rowan A.J., Pignatelli M., Bodmer W.F.

Proc. Natl. Acad. Sci. U.S.A. 94:10330-10334(1997).

Centrosome amplification and instability occurs exclusively in aneuploid, but not in diploid colorectal cancer cell lines, and correlates with numerical chromosomal aberrations.

Neumann T., Jauho A., Auer G., Ried T.

Genes Chromosomes Cancer 27:183-190(2000).

Systematic variation in gene expression patterns in human cancer cell lines.

Botstein D., Brown P.O.

Nat. Genet. 24:227-235(2000).

APC mutations in sporadic colorectal tumors: a mutational 'hotspot' and interdependence of the 'two hits'.

Papadopoulou A., Bicknell D.C., Bodmer W.F., Tomlinson I.P.M.

Proc. Natl. Acad. Sci. U.S.A. 97:3352-3357(2000).

Spectral karyotyping suggests additional subsets of colorectal cancers characterized by pattern of chromosome rearrangement.

Bicknell D.C., Bodmer W.F., Arends M.J., Wyllie A.H., Edwards P.A.W.

Proc. Natl. Acad. Sci. U.S.A. 98:2538-2543(2001).