HuCC-T1Homo sapiens (Human)Cancer cell line

Also known as: HuCCT1, HUCCT1, HUCC-T1, HUCCT-1, HuCCT-1

🤖 AI SummaryBased on 10 publications

Quick Overview

Human cholangiocarcinoma cell line with tumor marker secretion capabilities.

Detailed Summary

HuCC-T1 is a human cholangiocarcinoma cell line established from the ascites of a 56-year-old male patient. It exhibits epithelial-like morphology and secretes multiple tumor markers, including carbohydrate antigen 19/9 (CA19/9), which is a key biomarker for cholangiocarcinoma. The cell line is tumorigenic in nude mice and has been maintained for over 51 passages. It shows distinct growth characteristics in serum-free medium, with high CA19/9 secretion levels. The cell line provides a valuable model for studying tumor marker secretion and cholangiocarcinoma biology.

Research Applications

Tumor marker secretion studiesCholangiocarcinoma biologyIn vitro drug testingCell line development

Key Characteristics

Secretes CA19/9, CEA, CA125, and TPATumorigenic in nude miceMaintained in serum-free mediumEpithelial-like morphologyHigh CA19/9 secretion in 1% FBS medium
Generated on 6/15/2025

Basic Information

Database IDCVCL_0324
SpeciesHomo sapiens (Human)
Tissue SourceAscites[UBERON:UBERON_0007795]

Donor Information

Age56
Age CategoryAdult
SexMale
Raceasian

Disease Information

DiseaseCholangiocarcinoma
LineageBiliary Tract
SubtypeIntrahepatic Cholangiocarcinoma
OncoTree CodeIHCH

DepMap Information

Source TypeHSRRB
Source IDACH-000976_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Arg175His (c.524G>A)UnspecifiedSomatic mutation acquired during proliferationfrom parent cell line YCC-3
MutationSimpleMSH6p.Lys1358fs*2 (c.4071_4072insGATT)Heterozygous-Unknown, Unknown
MutationSimpleKRASp.Gly12Asp (c.35G>A)Unspecified-PubMed=29786757

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X,Y
CSF1PO
11,12
D12S391
18,20
D13S317
11,13
D16S539
9,11,12
D18S51
13
D19S433
13
D21S11
31
D2S1338
17,18
D3S1358
15
D5S818
12,13
D6S1043
13
D7S820
10,11
D8S1179
10
FGA
20,23
Penta D
10
Penta E
15,18
TH01
7,10
TPOX
8
vWA
18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Generation of a biliary tract cancer cell line atlas reveals molecular subtypes and therapeutic targets.

Vazquez F., Getz G., Bardeesy N.M.

bioRxiv 2024:07.04.601970-07.04.601970(2024).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Development and characterization of human primary cholangiocarcinoma cell lines.

Glaser S., Kennedy L., Francis H., Zhang W.-J., Alpini G.D., Ekser B.

Am. J. Pathol. 192:1200-1217(2022).

RNA sequencing of hepatobiliary cancer cell lines: data and applications to mutational and transcriptomic profiling.

Umu S.U., Rounge T.B., Roessler S., Lorenzo-Bermejo J.

Cancers (Basel) 12:2510.1-2510.14(2020).

Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types.

van 't Veer L.J., Butte A.J., Goldstein T., Sirota M.

Nat. Commun. 10:3574.1-3574.11(2019).

Dependency of cholangiocarcinoma on cyclin D-dependent kinase activity.

Jirawatnotai S.

Hepatology 70:1614-1630(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Isocitrate dehydrogenase mutations confer dasatinib hypersensitivity and SRC dependence in intrahepatic cholangiocarcinoma.

Bardeesy N.M.

Cancer Discov. 6:727-739(2016).

Antitumor effect of the novel sphingosine kinase 2 inhibitor ABC294640 is enhanced by inhibition of autophagy and by sorafenib in human cholangiocarcinoma cells.

Zou X.-P., Thomas M.B., Smith C.D., Roberts L.R.

Oncotarget 7:20080-20092(2016).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Statins induce apoptosis and inhibit proliferation in cholangiocarcinoma cells.

Kosaka K., Chayama K.

Int. J. Oncol. 39:561-568(2011).

Gene expression analysis for predicting gemcitabine resistance in human cholangiocarcinoma.

Tsuchiya T., Gotoh M.

J. Hepatobiliary Pancreat. Sci. 18:700-711(2011).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Screening the p53 status of human cell lines using a yeast functional assay.

Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.

Mol. Carcinog. 19:243-253(1997).

A new human cholangiocellular carcinoma cell line (HuCC-T1) producing carbohydrate antigen 19/9 in serum-free medium.

Miyagiwa M., Ichida T., Tokiwa T., Sato J., Sasaki H.

In Vitro Cell. Dev. Biol. 25:503-510(1989).

The p53 gene status and other cellular characteristics of human cell lines maintained in our laboratory.

Ohashi R., Namba M.

Tissue Cult. Res. Commun. 16:173-178(1997).