Hep 3B2.1-7Homo sapiens (Human)Cancer cell line

Also known as: Hep 3B2_1-7, Hep 3B 2.1-7, HEP3B217, Hep 3B2, HEP-3B2, HEP3B2, Hep-3B, HEP-3B, Hep 3B, Hep3B, HEP3B, Hep_3B1_1-7

🤖 AI SummaryBased on 12 publications

Quick Overview

Human hepatocellular carcinoma cell line with HBV surface antigen production.

Detailed Summary

Hep 3B2.1-7 is a human hepatocellular carcinoma (HCC) cell line derived from liver tissue. It expresses hepatitis B virus surface antigen (HBsAg) and is capable of producing both albumin and α-fetoprotein (AFP), indicating its hepatic differentiation. The cell line is tumorigenic in nude mice, forming tumors that are histologically similar to the original hepatoma. It has been used in studies related to HBV infection, viral protein expression, and cancer biology. The cell line exhibits specific chromosomal abnormalities, including trisomy of chromosome 1, and has been utilized in research on gene expression, mutational profiling, and drug response assays. Its utility in studying HBV integration and oncogenic transformation is well-documented in the literature.

Research Applications

HBV infection studiesCancer biologyGene expression analysisDrug response assaysMutational profiling

Key Characteristics

HBsAg productionAlbumin and AFP secretionTumorigenic in nude miceChromosomal abnormalitiesHepatic differentiation markers
Generated on 6/15/2025

Basic Information

Database IDCVCL_0326
SpeciesHomo sapiens (Human)
Tissue SourceLiver[UBERON:UBERON_0002107]

Donor Information

Age8
Age CategoryPediatric
SexMale
Raceblack_or_african_american

Disease Information

DiseaseChildhood hepatocellular carcinoma
LineageLiver
SubtypeHepatocellular Carcinoma
OncoTree CodeHCC

DepMap Information

Source TypeATCC
Source IDACH-000625_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleAXIN1p.Arg146Ter (c.436C>T)Homozygous-from parent cell line Hep 3B2.1-7
MutationSimpleRB1p.Ser576Ter (c.1727C>G)Homozygous-from parent cell line Hep 3B2.1-7

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
8
D13S317
12,14
D16S539
10
D18S51
20
D19S433
12.2,14
D21S11
30,31
D2S1338
21,25
D3S1358
15
D5S818
13
D7S820
8,10
D8S1179
12
FGA
18
Penta D
12,14
Penta E
5,16
TH01
6,7
TPOX
9
vWA
17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Screening human cell lines for viral infections applying RNA-Seq data analysis.

Uphoff C.C., Pommerenke C., Denkmann S.A., Drexler H.G.

PLoS ONE 14:E0210404-E0210404(2019).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

The cancer SENESCopedia: a delineation of cancer cell senescence.";

Leite de Oliveira R., Wessels L.F.A., Bernards R.

Cell Rep. 36:109441.1-109441.22(2021).

RNA sequencing of hepatobiliary cancer cell lines: data and applications to mutational and transcriptomic profiling.

Umu S.U., Rounge T.B., Roessler S., Lorenzo-Bermejo J.

Cancers (Basel) 12:2510.1-2510.14(2020).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types.

van 't Veer L.J., Butte A.J., Goldstein T., Sirota M.

Nat. Commun. 10:3574.1-3574.11(2019).

A pharmacogenomic landscape in human liver cancers.";

Hui L.-J.

Cancer Cell 36:179-193.e11(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Analysis of liver cancer cell lines identifies agents with likely efficacy against hepatocellular carcinoma and markers of response.

Couchy G., Calderaro J., Nault J.-C., Zucman-Rossi J., Rebouissou S.

Gastroenterology 157:760-776(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Human hepatoma cell lines.";

Alexander J.J.

(In book chapter) Neoplasms of the liver; Okuda K., Ishak K.G. (eds.); pp.47-56; Springer; Tokyo; Japan (1987).

The p53 gene status and other cellular characteristics of human cell lines maintained in our laboratory.

Ohashi R., Namba M.

Tissue Cult. Res. Commun. 16:173-178(1997).

Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line.

Aden D.P., Fogel A., Plotkin S.A., Damjanov I., Knowles B.B.

Nature 282:615-616(1979).

Purification of alpha 1-microglobulin produced by human hepatoma cell lines. Biochemical characterization and comparison with alpha 1-microglobulin synthesized by human hepatocytes.

Revillard J.-P.

Eur. J. Biochem. 165:699-704(1987).

Comparative expression of hepatitis B virus antigens in several cell model systems.

Aspinall S., Alexander J.J., Bos P.

J. Gen. Virol. 67:2315-2323(1986).

Liver cell lines.";

Darlington G.J.

Methods Enzymol. 151:19-38(1987).

Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen.

Knowles B.B., Howe C.C., Aden D.P.

Science 209:497-499(1980).

Detection of hepatitis B virus-specific DNA in the genomes of human hepatocellular carcinoma and liver cirrhosis tissues.

Koshy R., Maupas P., Muller R., Hofschneider P.H.

J. Gen. Virol. 57:95-102(1981).

Chromosomes of human hepatoma cell lines.";

Simon D., Aden D.P., Knowles B.B.

Int. J. Cancer 30:27-33(1982).

Mutations and altered expression of p16INK4 in human cancer.";

Harris C.C.

Proc. Natl. Acad. Sci. U.S.A. 91:11045-11049(1994).

HLA expression in hepatocellular carcinoma cell lines.";

Wadee A.A., Paterson A., Coplan K.A., Reddy S.G.

Clin. Exp. Immunol. 97:328-333(1994).

Retinoblastoma and p53 tumor suppressor genes in human hepatoma cell lines.

Ponchel F., Yakicier C., Ji J.-W., Ozturk M.

FASEB J. 7:1407-1413(1993).

p53 gene mutation and integrated hepatitis B viral DNA sequences in human liver cancer cell lines.

Harris C.C.

Carcinogenesis 14:987-992(1993).

Persistence of hepatitis C virus RNA in established human hepatocellular carcinoma cell lines.

Kosaka T., Tsuji T., Namba M.

J. Med. Virol. 48:133-140(1996).

Screening the p53 status of human cell lines using a yeast functional assay.

Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.

Mol. Carcinog. 19:243-253(1997).

Yeast functional assay of the p53 gene status in human cell lines maintained in our laboratory.

Fukaya K.-i., Ishioka C., Namba M.

Acta Med. Okayama 51:261-265(1997).

Yeast functional assay of the p53 gene status in 11 cell lines and 26 surgical specimens of human hepatocellular carcinoma.

Gao C., Ohashi R., Pu H., Inoue Y., Tsuji T., Miyazaki M., Namba M.

Oncol. Rep. 6:1267-1271(1999).

A comprehensive karyotypic study on human hepatocellular carcinoma by spectral karyotyping.

Wong N., Lai P.B.-S., Pang E., Leung T.W.-T., Lau J.W.-Y., Johnson P.J.

Hepatology 32:1060-1068(2000).

TFDP1, CUL4A, and CDC16 identified as targets for amplification at 13q34 in hepatocellular carcinomas.

Inazawa J.

Hepatology 35:1476-1484(2002).

Chemosensitivity profile of cancer cell lines and identification of genes determining chemosensitivity by an integrated bioinformatical approach using cDNA arrays.

Yamori T.

Mol. Cancer Ther. 4:399-412(2005).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Detection of EBV, HBV, HCV, HIV-1, HTLV-I and -II, and SMRV in human and other primate cell lines.

Uphoff C.C., Denkmann S.A., Steube K.G., Drexler H.G.

J. Biomed. Biotechnol. 2010:904767.1-904767.23(2010).

Characterization of HuH6, Hep3B, HepG2 and HLE liver cancer cell lines by WNT/beta-catenin pathway, microRNA expression and protein expression profile.

Macino G., Tanzarella C., Taruscio D.

Cell. Mol. Biol. 56:OL1299-OL1317(2010).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma.

Xu J.-C.

Hepatology 58:706-717(2013).

High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions.

Laurent C., Laurent A., Cherqui D., Balabaud C., Zucman-Rossi J.

Nat. Commun. 4:2218.1-2218.7(2013).

Genetic characteristics of the human hepatic stellate cell line LX-2.";

Arnold N., Siebert R., Xu L.-M., Friedman S.L., Bergmann C.

PLoS ONE 8:E75692-E75692(2013).

Common telomerase reverse transcriptase promoter mutations in hepatocellular carcinomas from different geographical locations.

Cevik D., Yildiz G., Ozturk M.

World J. Gastroenterol. 21:311-317(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

Comparison of protein expression between human livers and the hepatic cell lines HepG2, Hep3B, and Huh7 using SWATH and MRM-HR proteomics: Focusing on drug-metabolizing enzymes.

Shi J., Wang X.-W., Lyu L.-Y., Jiang H., Zhu H.-J.

Drug Metab. Pharmacokinet. 33:133-140(2018).