Hs 578THomo sapiens (Human)Cancer cell line

Also known as: HS 578T, Hs-578T, HS-578T, Hs_578t, Hs-578-T, HS-578-T, Hs 578.T, HS578T, Hs578T, Hs578t, HS0578T, 578T, HS578, Hs578, Homo sapiens No. 578, tumor cells, HTB126 (Based on the ATCC catalog number.), Hs-587-T, HS758T

🤖 AI SummaryBased on 10 publications

Quick Overview

Human breast cancer cell line with known mitochondrial mutations and heteroplasmic variants.

Detailed Summary

Hs 578T is a human breast cancer cell line derived from a mammary gland. It is part of a matched cell line pair with Hs 578Bst, which is a normal breast cell line. This cell line is used in studies related to mitochondrial DNA mutations and heteroplasmic variants. Research has identified several single nucleotide polymorphisms (SNPs) in the mitochondrial genome of Hs 578T, some of which are associated with cancer progression. The cell line is also used to study the effects of low-level heteroplasmic variants on mitochondrial function and cancer development. Additionally, Hs 578T has been utilized in investigations of the metabolic demands of cancer cells, including their protein synthesis rates and cell volume relationships.

Research Applications

Mitochondrial DNA mutation analysisHeteroplasmic variant studiesCancer metabolism researchProtein synthesis rate analysis

Key Characteristics

Matched cell line pair with Hs 578BstMitochondrial SNPs associated with cancerLow-level heteroplasmic variantsUsed in metabolic studies of cancer cells
Generated on 6/15/2025

Basic Information

Database IDCVCL_0332
SpeciesHomo sapiens (Human)
Tissue SourceBreast[UBERON:UBERON_0000310]

Donor Information

Age74
Age CategoryAdult
SexFemale
Racecaucasian
Subtype Featuresbasal_B TNBC

Disease Information

DiseaseInvasive breast carcinoma of no special type
LineageBreast
SubtypeBreast Invasive Carcinoma, NOS
OncoTree CodeBRCNOS

DepMap Information

Source TypeATCC
Source IDACH-000148_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
Gene deletionCDKN2A-HomozygousPossiblePubMed=26870271
MutationSimpleHRASp.Gly12Asp (c.35G>A)Heterozygous-from parent cell line SUM159PT
MutationSimpleMTp.Ala125Thr (m.15119G>A)HomoplasmicLess <1% while homoplasmic in autologous cell line Hs 578TPubMed=29671673
MutationSimpleTP53p.Val157Phe (c.469G>T)Homozygous-Unknown

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
13
D10S1248
16
D12S391
19
D13S317
11
D16S539
9,12
D18S51
16
D19S433
14,15
D1S1656
11,16
D21S11
29,32.2
D22S1045
15,16
D2S1338
17,26
D2S441
14
D3S1358
16,17
D5S818
11
D6S1043
12
D7S820
10
D8S1179
13
FGA
23,24
Penta D
8,13
Penta E
13,14
TH01
9,9.3
TPOX
8
vWA
17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery.

Pollack J.R.

PLoS ONE 4:E6146-E6146(2009).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Cancer-specific SNPs originate from low-level heteroplasmic variants in human mitochondrial genomes of a matched cell line pair.

Johansen S.D.

Mitochondrial DNA A. DNA Mapp. Seq. Anal. 30:82-91(2019).

Multidimensional phenotyping of breast cancer cell lines to guide preclinical research.

Lakhani S.R.

Breast Cancer Res. Treat. 167:289-301(2018).

Glycoproteins in claudin-low breast cancer cell lines have a unique expression profile.

Yen T.-Y., Bowen S., Yen R., Piryatinska A., Macher B.A., Timpe L.C.

J. Proteome Res. 16:1391-1400(2017).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A map of mobile DNA insertions in the NCI-60 human cancer cell panel.

Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.

Mob. DNA 7:20.1-20.11(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.

Vandesompele J.

Sci. Data 3:160052-160052(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

OncoImmunology 3:e954893.1-e954893.12(2014).

The proteomic landscape of triple-negative breast cancer.";

Irie H.Y., Lee S.-I., Blau C.A., Villen J.

Cell Rep. 11:630-644(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.

Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.

PLoS ONE 9:E92047-E92047(2014).

The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.

Hirshfield K.M., Oltvai Z.N., Vazquez A.

Cancer Metab. 1:20.1-20.13(2013).

Modeling precision treatment of breast cancer.";

Collisson E.A., van 't Veer L.J., Spellman P.T., Gray J.W.

Genome Biol. 14:R110.1-R110.14(2013).

Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes.

Harrell J.C., Roman E., Adamo B., Troester M.A., Perou C.M.

Breast Cancer Res. Treat. 142:237-255(2013).

Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target.

McCormick F., Gray J.W.

Cancer Cell 24:450-465(2013).

Cell surface-specific N-glycan profiling in breast cancer.";

Shi S.-L., Chen C.-Y., Li Y.

PLoS ONE 8:E72704-E72704(2013).

Global proteome analysis of the NCI-60 cell line panel.";

Wilhelm M., Kuster B.

Cell Rep. 4:609-620(2013).

The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.

Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.

Cancer Res. 73:4372-4382(2013).

miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs.

Martens J.W.M.

Breast Cancer Res. 15:R33.1-R33.17(2013).

Molecular characterisation of cell line models for triple-negative breast cancers.

Reis-Filho J.S., Tutt A.

BMC Genomics 13:619.1-619.14(2012).

Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.

Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.

Science 336:1040-1044(2012).

Essential gene profiles in breast, pancreatic, and ovarian cancer cells.

Rottapel R., Neel B.G., Moffat J.

Cancer Discov. 2:172-189(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Identification of cancer cell-line origins using fluorescence image-based phenomic screening.

Yoon C.N., Chang Y.-T.

PLoS ONE 7:E32096-E32096(2012).

Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.

Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.

PLoS ONE 7:E31628-E31628(2012).

Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.

Ambudkar S.V., Gottesman M.M.

Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).

Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer.

Chavez K.J., Garimella S.V., Lipkowitz S.

Breast Dis. 32:35-48(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Breast cancer cell lines carry cell line-specific genomic alterations that are distinct from aberrations in breast cancer tissues: comparison of the CGH profiles between cancer cell lines and primary cancer tissues.

Yamamoto S., Oka M., Hirano T., Sasaki K.

BMC Cancer 10:15.1-15.10(2010).

Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines.

den Bakker M.A., Foekens J.A., Martens J.W.M., Schutte M.

Breast Cancer Res. Treat. 121:53-64(2010).

Cell lines from human breast.";

Leibovitz A.

(In book chapter) Atlas of human tumor cell lines; Hay R.J., Park J.-G., Gazdar A.F. (eds.); pp.161-184; Academic Press; New York; USA (1994).

Breast cancer stem cells: tumourspheres and implications for therapy.";

Morrison B.J.

Thesis PhD (2010); Griffith University; Brisbane; Australia.

STR profiling of human cell lines: challenges and possible solutions to the growing problem.

Hart R.P., Furtado M.R.

J. Forensic Res. 2 Suppl. 2:5-5(2011).

In vitro properties of epithelial cell lines established from human carcinomas and nonmalignant tissue.

Smith H.S.

J. Natl. Cancer Inst. 62:225-230(1979).

Nuclear ultrastructure of epithelial cell lines derived from human carcinomas and nonmalignant tissues.

Smith H.S., Springer E.L., Hackett A.J.

Cancer Res. 39:332-344(1979).

Two syngeneic cell lines from human breast tissue: the aneuploid mammary epithelial (Hs578T) and the diploid myoepithelial (Hs578Bst) cell lines.

Riggs J.L., Gardner M.B.

J. Natl. Cancer Inst. 58:1795-1806(1977).

Mutations in p53 as potential molecular markers for human breast cancer.

Runnebaum I.B., Nagarajan M., Bowman M., Soto D., Sukumar S.

Proc. Natl. Acad. Sci. U.S.A. 88:10657-10661(1991).

Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.

Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.

Cancer Res. 48:589-601(1988).

Characterization of four doxorubicin adapted human breast cancer cell lines with respect to chemotherapeutic drug sensitivity, drug resistance associated membrane proteins and glutathione transferases.

Mannervik B., Bergh J.

Anticancer Res. 13:1425-1430(1993).

Systematic variation in gene expression patterns in human cancer cell lines.

Botstein D., Brown P.O.

Nat. Genet. 24:227-235(2000).

Comparative genomic hybridization analysis of 38 breast cancer cell lines: a basis for interpreting complementary DNA microarray data.

Gooden G.C., Ethier S.P., Kallioniemi A.H., Kallioniemi O.-P.

Cancer Res. 60:4519-4525(2000).

The acetyltransferase p300/CBP-associated factor is a p53 target gene in breast tumor cells.

Domann F.E., Futscher B.W.

Neoplasia 6:187-194(2004).

Evidence that both genetic instability and selection contribute to the accumulation of chromosome alterations in cancer.

Edwards P.A.W., Caldas C.

Carcinogenesis 26:923-930(2005).

HLA class I and II genotype of the NCI-60 cell lines.";

Morse H.C. 3rd, Stroncek D., Marincola F.M.

J. Transl. Med. 3:11.1-11.8(2005).

Molecular characterization of breast cancer cell lines by a low-density microarray.

Remacle J.

Int. J. Oncol. 27:881-892(2005).

BRCA1 mutation analysis of 41 human breast cancer cell lines reveals three new deleterious mutants.

van den Ouweland A.M.W., Merajver S.D., Ethier S.P., Schutte M.

Cancer Res. 66:41-45(2006).

Thirteen new p53 gene mutants identified among 41 human breast cancer cell lines.

Wasielewski M., Elstrodt F., Klijn J.G.M., Berns E.M.J.J., Schutte M.

Breast Cancer Res. Treat. 99:97-101(2006).

The consensus coding sequences of human breast and colorectal cancers.

Vogelstein B., Kinzler K.W., Velculescu V.E.

Science 314:268-274(2006).

Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.

Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.

Mol. Cancer Ther. 5:2606-2612(2006).

A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes.

Johnson M.D., Lippman M.E., Ethier S.P., Gazdar A.F., Gray J.W.

Cancer Cell 10:515-527(2006).

The genomic landscapes of human breast and colorectal cancers.";

Vogelstein B.

Science 318:1108-1113(2007).

Analysis of p53 mutation status in human cancer cell lines: a paradigm for cell line cross-contamination.

Berglind H., Pawitan Y., Kato S., Ishioka C., Soussi T.

Cancer Biol. Ther. 7:699-708(2008).

Characterisation of breast cancer cell lines and establishment of a novel isogenic subclone to study migration, invasion and tumourigenicity.

Hughes L., Malone C., Chumsri S., Burger A.M., McDonnell S.

Clin. Exp. Metastasis 25:549-557(2008).

The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression.

Petersen O.W., Gray J.W., Bissell M.J.

Mol. Oncol. 1:84-96(2007).

DNA fingerprinting of the NCI-60 cell line panel.";

Chanock S.J., Weinstein J.N.

Mol. Cancer Ther. 8:713-724(2009).