Huh-7Homo sapiens (Human)Cancer cell line

Also known as: HuH-7, HUH-7, HuH7, Huh7, HUH7, HUH7.0, JTC-39, Japanese Tissue Culture-39

🤖 AI SummaryBased on 12 publications

Quick Overview

Human hepatoma cell line for liver research

Detailed Summary

Huh-7 is a human hepatoma cell line established from a hepatocellular carcinoma. It is widely used in research for studying liver functions, viral infections, and cancer mechanisms. The cell line retains some differentiated liver functions, such as the production of alpha-fetoprotein (AFP) and albumin. It is also utilized in studies involving hepatitis C virus (HCV) replication and drug development. Huh-7 has been characterized for its ability to support the replication of HCV RNA and is a valuable tool for understanding viral persistence and host-virus interactions.

Research Applications

Hepatitis C virus (HCV) researchLiver function studiesCancer mechanism investigationsDrug developmentViral replication studies

Key Characteristics

Retains differentiated liver functionsSupports HCV RNA replicationProduces alpha-fetoprotein (AFP)Used in cancer research
Generated on 6/15/2025

Basic Information

Database IDCVCL_0336
SpeciesHomo sapiens (Human)
Tissue SourceLiver[UBERON:UBERON_0002107]

Donor Information

Age57
Age CategoryAdult
SexMale
Raceasian

Disease Information

DiseaseAdult hepatocellular carcinoma
LineageLiver
SubtypeHepatocellular Carcinoma
OncoTree CodeHCC

DepMap Information

Source TypeHSRRB
Source IDACH-000480_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleKDRp.Gln472His (c.1416A>T)Heterozygous-PubMed=27822414
MutationSimplePOLD3p.Lys109Arg (c.326A>G) (p.Lys70Arg, c.209A>G)Unspecified-from parent cell line Huh-7
MutationSimpleTERTc.1-124C>T (c.228C>T) (C228T)UnspecifiedIn promoterfrom parent cell line Hep-G2
MutationSimpleTP53p.Tyr220Cys (c.659A>G)Unspecified-PubMed=21173094

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
11
D10S1248
16
D12S391
20
D13S317
10
D16S539
10
D18S51
15
D19S433
13,14
D1S1656
16
D21S11
30
D22S1045
17,20
D2S1338
19
D2S441
12,14
D3S1358
15
D5S818
12
D6S1043
13,15
D7S820
11
D8S1179
14,15
FGA
22,23
Penta D
12
Penta E
11
TH01
7
TPOX
8,11
vWA
16,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

CRISPR/Cas9 genome-wide screening identifies KEAP1 as a sorafenib, lenvatinib, and regorafenib sensitivity gene in hepatocellular carcinoma.

Ziros P.G., Sykiotis G.P., Widmann C.

Oncotarget 10:7058-7070(2019).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative high-confidence human mitochondrial proteome and its dynamics in cellular context.

Oeljeklaus S., Pfanner N., Wiedemann N., Warscheid B.

Cell Metab. 33:2464-2483.e18(2021).

The cancer SENESCopedia: a delineation of cancer cell senescence.";

Leite de Oliveira R., Wessels L.F.A., Bernards R.

Cell Rep. 36:109441.1-109441.22(2021).

Identification of characteristic genomic markers in human hepatoma Huh-7 and Huh7.5.1-8 cell lines.

Fukasawa M., Hanada K., Osada N.

Front. Genet. 11:546106.1-546106.10(2020).

RNA sequencing of hepatobiliary cancer cell lines: data and applications to mutational and transcriptomic profiling.

Umu S.U., Rounge T.B., Roessler S., Lorenzo-Bermejo J.

Cancers (Basel) 12:2510.1-2510.14(2020).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Human hepatoma cell lines.";

Alexander J.J.

(In book chapter) Neoplasms of the liver; Okuda K., Ishak K.G. (eds.); pp.47-56; Springer; Tokyo; Japan (1987).

Cellular characteristics and utilization of human hepatoma cell lines which were established in our laboratory and distributed by Japanese Cancer Research Resources Bank.

Namba M., Nakabayashi H., Doi I., Sato J., Miyazaki M.

Tissue Cult. Res. Commun. 12:221-227(1993).

The p53 gene status and other cellular characteristics of human cell lines maintained in our laboratory.

Ohashi R., Namba M.

Tissue Cult. Res. Commun. 16:173-178(1997).

Phenotypical stability of a human hepatoma cell line, HuH-7, in long-term culture with chemically defined medium.

Nakabayashi H., Taketa K., Yamane T., Miyazaki M., Miyano K., Sato J.

Gann 75:151-158(1984).

Retinoblastoma and p53 tumor suppressor genes in human hepatoma cell lines.

Ponchel F., Yakicier C., Ji J.-W., Ozturk M.

FASEB J. 7:1407-1413(1993).

p53 gene mutation and integrated hepatitis B viral DNA sequences in human liver cancer cell lines.

Harris C.C.

Carcinogenesis 14:987-992(1993).

Persistence of hepatitis C virus RNA in established human hepatocellular carcinoma cell lines.

Kosaka T., Tsuji T., Namba M.

J. Med. Virol. 48:133-140(1996).

Screening the p53 status of human cell lines using a yeast functional assay.

Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.

Mol. Carcinog. 19:243-253(1997).

Yeast functional assay of the p53 gene status in human cell lines maintained in our laboratory.

Fukaya K.-i., Ishioka C., Namba M.

Acta Med. Okayama 51:261-265(1997).

Yeast functional assay of the p53 gene status in 11 cell lines and 26 surgical specimens of human hepatocellular carcinoma.

Gao C., Ohashi R., Pu H., Inoue Y., Tsuji T., Miyazaki M., Namba M.

Oncol. Rep. 6:1267-1271(1999).

Characterization of cell lines carrying self-replicating hepatitis C virus RNAs.

Bartenschlager R.F.W.

J. Virol. 75:1252-1264(2001).

TFDP1, CUL4A, and CDC16 identified as targets for amplification at 13q34 in hepatocellular carcinomas.

Inazawa J.

Hepatology 35:1476-1484(2002).

Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I.

Lemon S.M., Gale M. Jr.

J. Virol. 79:2689-2699(2005).

Chemosensitivity profile of cancer cell lines and identification of genes determining chemosensitivity by an integrated bioinformatical approach using cDNA arrays.

Yamori T.

Mol. Cancer Ther. 4:399-412(2005).

Stable HepG2- and Huh7-based human hepatoma cell lines for efficient regulated expression of infectious hepatitis B virus.

Sun D.-X., Nassal M.

J. Hepatol. 45:636-645(2006).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

A subclone of HuH-7 with enhanced intracellular hepatitis C virus production and evasion of virus related-cell cycle arrest.

Kim S., Wakita T., Mishiro S., Kato T.

PLoS ONE 7:E52697-E52697(2012).

Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma.

Xu J.-C.

Hepatology 58:706-717(2013).

High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions.

Laurent C., Laurent A., Cherqui D., Balabaud C., Zucman-Rossi J.

Nat. Commun. 4:2218.1-2218.7(2013).

The viral envelope is not sufficient to transfer the unique broad cell tropism of Bungowannah virus to a related pestivirus.

Richter M., Reimann I., Schirrmeier H., Kirkland P.D., Beer M.

J. Gen. Virol. 95:2216-2222(2014).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Common telomerase reverse transcriptase promoter mutations in hepatocellular carcinomas from different geographical locations.

Cevik D., Yildiz G., Ozturk M.

World J. Gastroenterol. 21:311-317(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Phosphorylation of mTOR Ser2481 is a key target limiting the efficacy of rapalogs for treating hepatocellular carcinoma.

Murakami Y., Yano H., Kuwano M., Ono M.

Oncotarget 7:47403-47417(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

Comparison of protein expression between human livers and the hepatic cell lines HepG2, Hep3B, and Huh7 using SWATH and MRM-HR proteomics: Focusing on drug-metabolizing enzymes.

Shi J., Wang X.-W., Lyu L.-Y., Jiang H., Zhu H.-J.

Drug Metab. Pharmacokinet. 33:133-140(2018).

HuH-7 reference genome profile: complex karyotype composed of massive loss of heterozygosity.

Kasai F., Hirayama N., Ozawa M., Satoh M., Kohara A.

Hum. Cell 31:261-267(2018).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Analysis of liver cancer cell lines identifies agents with likely efficacy against hepatocellular carcinoma and markers of response.

Couchy G., Calderaro J., Nault J.-C., Zucman-Rossi J., Rebouissou S.

Gastroenterology 157:760-776(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

A pharmacogenomic landscape in human liver cancers.";

Hui L.-J.

Cancer Cell 36:179-193.e11(2019).

Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types.

van 't Veer L.J., Butte A.J., Goldstein T., Sirota M.

Nat. Commun. 10:3574.1-3574.11(2019).