KATO IIIHomo sapiens (Human)Cancer cell line

Also known as: Japanese Tissue Culture-28, JTC-28, KATO 3, KatoIII, KATOIII, KATO-III, Kato-III, Kato III

🤖 AI SummaryBased on 14 publications

Quick Overview

Human gastric cancer cell line with FGFR2 overexpression and sensitivity to AZD2171.

Detailed Summary

KATO III is a human gastric cancer cell line characterized by overexpression of fibroblast growth factor receptor 2 (FGFR2) and sensitivity to the VEGFR inhibitor AZD2171. This cell line is frequently used in research to study the efficacy of targeted therapies against FGFR2-driven cancers. It has been utilized in studies investigating the molecular mechanisms of gastric cancer and the development of novel therapeutic strategies. KATO III is also noted for its ability to form tumors in vivo, making it a valuable model for preclinical studies. The cell line's genetic profile includes specific mutations and expression patterns that contribute to its unique response to various anticancer agents.

Research Applications

Targeted therapy researchFGFR2 signaling studiesDrug sensitivity profilingPreclinical tumor modeling

Key Characteristics

FGFR2 overexpressionSensitivity to AZD2171In vivo tumorigenicityGenomic alterations in FGFR2
Generated on 6/15/2025

Basic Information

Database IDCVCL_0371
SpeciesHomo sapiens (Human)
Tissue SourcePleural effusion[UBERON:UBERON_0000175]

Donor Information

Age57
Age CategoryAdult
SexMale
Raceasian

Disease Information

DiseaseGastric signet ring cell adenocarcinoma
LineageEsophagus/Stomach
SubtypeSignet Ring Cell Carcinoma of the Stomach
OncoTree CodeSSRCC

DepMap Information

Source TypeATCC
Source IDACH-000793_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
Gene deletionTP53-Homozygous2 out of 3 copiesfrom parent cell line HL-60

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
7,11
D13S317
8,12
D16S539
10,12
D18S51
12
D19S433
13,16
D21S11
30,31
D2S1338
18,20
D3S1358
15,16
D5S818
10,11
D7S820
8,12
D8S1179
13,14
FGA
23,24
Penta D
13,14
Penta E
13,18,19
TH01
7,9
TPOX
11
vWA
14,16
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

TDP1 and TOP1 modulation in olaparib-resistant cancer determines the efficacy of subsequent chemotherapy.

Kim T.-Y., Lee K.W., Oh D.-Y., Kim J.-H., Bang Y.-J.

Cancers (Basel) 12:334.1-334.17(2020).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Forty-nine gastric cancer cell lines with integrative genomic profiling for development of c-MET inhibitor.

Kragh M., Horak I.D., Chung H.C., Rha S.Y.

Int. J. Cancer 143:151-159(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

OncoImmunology 3:e954893.1-e954893.12(2014).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Molecular integrative clustering of Asian gastric cell lines revealed two distinct chemosensitivity clusters.

Yang H.H., Lee M.A.

PLoS ONE 9:E111146-E111146(2014).

Integrated exome and transcriptome sequencing reveals ZAK isoform usage in gastric cancer.

Firestein R., Zhang Z.-M.

Nat. Commun. 5:3830.1-3830.8(2014).

A compensatory role of NF-kappaB to p53 in response to 5-FU-based chemotherapy for gastric cancer cell lines.

Sato K., Iwaya T., Koeda K., Wakabayashi G.

PLoS ONE 9:E90155-E90155(2014).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

AZD2171 shows potent antitumor activity against gastric cancer over-expressing fibroblast growth factor receptor 2/keratinocyte growth factor receptor.

Yamada Y., Tamura T., Fukuoka K., Kimura H., Saijo N., Nishio K.

Clin. Cancer Res. 13:3051-3057(2007).

Screening of DNA copy-number aberrations in gastric cancer cell lines by array-based comparative genomic hybridization.

Okanoue T., Inazawa J.

Cancer Sci. 96:100-110(2005).

Alpha-fetoprotein producing gastric cancer lacks transcription factor ATBF1.

Nakabayashi H., Kawaguchi M., Asai K., Kato T., Itoh M.

Oncogene 20:869-873(2001).

Molecular characteristics of eight gastric cancer cell lines established in Japan.

Yokozaki H.

Pathol. Int. 50:767-777(2000).

Screening the p53 status of human cell lines using a yeast functional assay.

Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.

Mol. Carcinog. 19:243-253(1997).

Expression of bone morphogenetic proteins of human neoplastic epithelial cells.

Hatakeyama S., Gao Y.-H., Ohara-Nemoto Y., Kataoka H., Satoh M.

Biochem. Mol. Biol. Int. 42:497-505(1997).

HLA-A locus-restricted and tumor-specific CTLs in tumor-infiltrating lymphocytes of patients with non-small cell lung cancer.

Seki N., Hoshino T., Kikuchi M., Hayashi A., Itoh K.

Cell. Immunol. 175:101-110(1997).

Thromboplastic and fibrinolytic activities of cultured human gastric cancer cell lines.

Naito S., Inoue S., Kinjo M., Tanaka K.

Gann 74:240-247(1983).

Comparison of seven cell lines derived from human gastric carcinomas.

Motoyama T., Hojo H., Watanabe H.

Acta Pathol. Jpn. 36:65-83(1986).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

p53 gene mutations in gastric cancer metastases and in gastric cancer cell lines derived from metastases.

Nakatani K., Nakano H., Sugimura T., Terada M.

Cancer Res. 51:5800-5805(1991).

Aberrant elevation of tyrosine-specific phosphorylation in human gastric cancer cells.

Ohnishi Y., Xiao H.-Y., Nagai Y., Takagi H.

Jpn. J. Cancer Res. 82:1428-1435(1991).

Missense mutations and a deletion of the p53 gene in human gastric cancer.

Wada K., Uchida T., Nishisaki H., Nagao M., Kasuga M.

Biochem. Biophys. Res. Commun. 182:215-223(1992).

Establishment of cultured cell lines derived from a human gastric carcinoma.

Sekiguchi M., Sakakibara K., Fujii G.

Jpn. J. Exp. Med. 48:61-68(1978).

Operation of the JCRB cell bank and isoenzyme.";

Mizusawa H.

Seibutsu Butsuri Kagaku 34:289-292(1990).

Gastric tumor cell lines.";

Sekiguchi M., Suzuki T.

(In book chapter) Atlas of human tumor cell lines; Hay R.J., Park J.-G., Gazdar A.F. (eds.); pp.287-316; Academic Press; New York; USA (1994).

Web Resources