LN-229Homo sapiens (Human)Cancer cell line

Also known as: LNT-229, LN229, LN 229, LN22

🤖 AI SummaryBased on 13 publications

Quick Overview

Human glioblastoma cell line for cancer research.

Detailed Summary

LN-229 is a human glioblastoma cell line derived from a brain tumor. It is widely used in research for studying glioblastoma biology, including mechanisms of tumor growth, drug resistance, and genetic alterations. This cell line has been utilized in studies involving the MAP kinase-interacting kinase 1 (MNK1) and its role in regulating the TGF-β signaling pathway. Additionally, LN-229 has been employed in investigations of p53's role in antiangiogenic signaling and in assessing the efficacy of various therapeutic agents. The cell line is also part of comprehensive genomic and transcriptomic studies, contributing to the understanding of cancer cell line diversity and its implications for treatment strategies.

Research Applications

Cancer biology researchDrug resistance studiesGenomic and transcriptomic analysisTherapeutic target identification

Key Characteristics

Used in studies of MNK1 and TGF-β signalingInvestigated for p53-related antiangiogenic pathwaysPart of large-scale cancer cell line panels for genomic profiling
Generated on 6/15/2025

Basic Information

Database IDCVCL_0393
SpeciesHomo sapiens (Human)
Tissue SourceBrain, right frontal parieto-occipital cortex

Donor Information

Age60
Age CategoryAdult
SexFemale
Racecaucasian

Disease Information

DiseaseGlioblastoma
LineageCNS/Brain
SubtypeGlioblastoma
OncoTree CodeGB

DepMap Information

Source TypeATCC
Source IDACH-000595_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Pro98Leu (c.293C>T)Homozygous-from parent cell line LN-229
MutationSimpleTERTc.1-124C>T (c.228C>T) (C228T)UnspecifiedIn promoterfrom parent cell line Hep-G2
MutationSimpleRAD21p.Gln132Ter (c.394C>T)Heterozygous-from parent cell line LN-229
MutationSimpleLIFRp.Pro1060Ala (c.3178C>G)Heterozygous-from parent cell line LN-229
Gene deletionCDKN2A-HomozygousPossiblePubMed=26870271

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
12
D10S1248
16
D12S391
20,22
D13S317
10,11
D16S539
12
D18S51
13,15
D19S433
12,17.2
D1S1656
14,17
D21S11
29,30
D22S1045
15,16
D2S1338
19,20
D2S441
10,11
D3S1358
16,17
D5S818
11
D7S820
11
D8S1179
13,14
FGA
23
Penta D
10,11
Penta E
7,16
TH01
9.3
TPOX
8
vWA
16,19
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Human leukocyte antigen (HLA) peptides derived from tumor antigens induced by inhibition of DNA methylation for development of drug-facilitated immunotherapy.

Shraibman B., Kadosh D.M., Barnea E., Admon A.

Mol. Cell. Proteomics 15:3058-3070(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Elucidating the cancer-specific genetic alteration spectrum of glioblastoma derived cell lines from whole exome and RNA sequencing.

Patil V., Pal J., Somasundaram K.

Oncotarget 6:43452-43471(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

A mass spectrometric-derived cell surface protein atlas.";

Aebersold R., Boheler K.R., Zandstra P.W., Wollscheid B.

PLoS ONE 10:E0121314-E0121314(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

WIF1 re-expression in glioblastoma inhibits migration through attenuation of non-canonical WNT signaling by downregulating the lncRNA MALAT1.

Vassallo I., Zinn P.O., Lai M., Rajakannu P., Hamou M.-F., Hegi M.E.

Oncogene 35:12-21(2016).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

DNA fingerprinting of glioma cell lines and considerations on similarity measurements.

Hamou M.-F., Delorenzi M., Hegi M.E.

Neuro-oncol. 14:701-711(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

MAP kinase-interacting kinase 1 regulates SMAD2-dependent TGF-beta signaling pathway in human glioblastoma.

Moncayo G., Hemmings B.A.

Cancer Res. 71:2392-2402(2011).

Defective p53 antiangiogenic signaling in glioblastoma.";

von Deimling A., Wick W., Weiler M.

Neuro-oncol. 12:894-907(2010).

Molecular and phenotypic characterisation of paediatric glioma cell lines as models for preclinical drug development.

Jones C.

PLoS ONE 4:E5209-E5209(2009).

Mechanisms of resistance of human glioma cells to Apo2 ligand/TNF-related apoptosis-inducing ligand.

Rieger J., Frank B., Weller M., Wick W.

Cell. Physiol. Biochem. 20:23-34(2007).

Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines.

Fine H.A.

Cancer Cell 9:391-403(2006).

P-glycoprotein and multidrug resistance-associated protein mediate specific patterns of multidrug resistance in malignant glioma cell lines, but not in primary glioma cells.

Bahr O., Rieger J., Duffner F., Meyermann R., Weller M., Wick W.

Brain Pathol. 13:482-494(2003).

CP-31398, a novel p53-stabilizing agent, induces p53-dependent and p53-independent glioma cell death.

Wischhusen J., Naumann U., Ohgaki H., Rastinejad F., Weller M.

Oncogene 22:8233-8245(2003).

Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines.

Van Meir E.G.

Brain Pathol. 9:469-479(1999).

Predicting chemoresistance in human malignant glioma cells: the role of molecular genetic analyses.

Krajewski S., Reed J.C., von Deimling A., Dichgans J.

Int. J. Cancer 79:640-644(1998).

The human melanoma antigen-encoding gene, MAGE-1, is expressed by other tumour cells of neuroectodermal origin such as glioblastomas and neuroblastomas.

Rimoldi D., Romero P., Carrel S.

Int. J. Cancer 54:527-528(1993).

Variant CD44 adhesion molecules are expressed in human brain metastases but not in glioblastomas.

Diserens A.-C., Van Meir E.G.

Cancer Res. 53:5345-5349(1993).

Brain tumors.";

Ali-Osman F.

(In book chapter) Human cell culture. Vol. 2. Cancer cell lines part 2; Masters J.R.W., Palsson B.O. (eds.); pp.167-184; Kluwer Academic Publishers; New York; USA (1999).