LS180Homo sapiens (Human)Cancer cell line

Also known as: Laboratory of Surgery 180, LS 180, LS-180

🤖 AI SummaryBased on 13 publications

Quick Overview

Human colon epithelial cell line with known KRAS mutations and potential for drug sensitivity studies.

Detailed Summary

LS180 is a human colon epithelial cell line derived from a colorectal cancer tumor. It is widely used in cancer research due to its well-characterized genetic profile, including mutations in the KRAS gene. This cell line has been utilized in studies examining the molecular mechanisms of colorectal cancer, particularly in relation to drug response and resistance. LS180 is notable for its role in understanding the impact of KRAS mutations on therapeutic outcomes, making it a valuable tool for preclinical drug development and personalized medicine research. The cell line's genetic stability and availability make it a reliable model for investigating the efficacy of targeted therapies and biomarker validation.

Research Applications

Drug Sensitivity StudiesKRAS Mutation AnalysisMolecular Mechanisms of Colorectal CancerPreclinical Drug DevelopmentBiomarker Validation

Key Characteristics

KRAS MutationsColon Epithelial OriginWell-Characterized Genetic ProfileUsed in Drug Response Research
Generated on 6/15/2025

Basic Information

Database IDCVCL_0397
SpeciesHomo sapiens (Human)
Tissue SourceColon[UBERON:UBERON_0001155]

Donor Information

Age58
Age CategoryAdult
SexFemale
Subtype FeaturesMSI

Disease Information

DiseaseColon adenocarcinoma
LineageBowel
SubtypeColon Adenocarcinoma
OncoTree CodeCOAD

DepMap Information

Source TypeATCC
Source IDACH-000957_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationNone reportedTP53---PubMed=19787792
MutationSimpleTGFBR2p.Lys128Serfs*35 (c.383delA)Homozygous-PubMed=12615714
MutationSimplePIK3CAp.His1047Arg (c.3140A>G)Unspecified-PubMed=25926053, PubMed=20570890
MutationSimpleKRASp.Gly12Asp (c.35G>A)Unspecified-PubMed=29786757
MutationSimpleCTNNB1p.Ser45Phe (c.134C>T)Heterozygous-PubMed=33379206, PubMed=20106868
MutationSimpleACVR2Ap.Lys437Argfs*5 (c.1310delA)Homozygous-PubMed=12615714

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10,12
D13S317
10
D16S539
11,12
D18S51
11,13
D19S433
14,15
D21S11
29,31
D2S1338
18,22
D3S1358
15,17
D5S818
10,15
D7S820
9.3,11
D8S1179
12,16
FGA
21,22
Penta D
10
Penta E
15,16
TH01
6,7
TPOX
8,9
vWA
15,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Differential effector engagement by oncogenic KRAS.";

McCormick F.

Cell Rep. 22:1889-1902(2018).

Pharmacoproteomic characterisation of human colon and rectal cancer.

Weichert W., Knapp S., Feller S.M., Kuster B.

Mol. Syst. Biol. 13:951-951(2017).

Genomic determinants of protein abundance variation in colorectal cancer cells.

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Choudhary J.S.

Cell Rep. 20:2201-2214(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

N-glycosylation profiling of colorectal cancer cell lines reveals association of fucosylation with differentiation and caudal type homebox 1 (CDX1)/villin mRNA expression.

Tollenaar R.A.E.M., Rombouts Y., Wuhrer M.

Mol. Cell. Proteomics 15:124-140(2016).

The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets.

Linnebacher M., Cordero F., Di Nicolantonio F., Bardelli A.

Nat. Commun. 6:7002.1-7002.10(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer.

Mariadason J.M., Sieber O.M.

Cancer Res. 74:3238-3247(2014).

Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines.

Orphanides G., French T., Wessels L.F.A.

BMC Med. Genomics 5:66.1-66.15(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

5-fluorouracil response in a large panel of colorectal cancer cell lines is associated with mismatch repair deficiency.

Bracht K., Nicholls A.M., Liu Y., Bodmer W.F.

Br. J. Cancer 103:340-346(2010).

Genomic and biological characterization of exon 4 KRAS mutations in human cancer.

Lash A., Ladanyi M., Saltz L.B., Heguy A., Paty P.B., Solit D.B.

Cancer Res. 70:5901-5911(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Cell growth, global phosphotyrosine elevation, and c-Met phosphorylation through Src family kinases in colorectal cancer cells.

Emaduddin M., Bicknell D.C., Bodmer W.F., Feller S.M.

Proc. Natl. Acad. Sci. U.S.A. 105:2358-2362(2008).

Analysis of p53 mutations and their expression in 56 colorectal cancer cell lines.

Liu Y., Bodmer W.F.

Proc. Natl. Acad. Sci. U.S.A. 103:976-981(2006).

Evidence of selection for clones having genetic inactivation of the activin A type II receptor (ACVR2) gene in gastrointestinal cancers.

Willson J.K.V., Yeo C.J., Hruban R.H., Kern S.E.

Cancer Res. 63:994-999(2003).

Searching for microsatellite mutations in coding regions in lung, breast, ovarian and colorectal cancers.

Minna J.D.

Oncogene 20:1005-1009(2001).

APC mutations in sporadic colorectal tumors: a mutational 'hotspot' and interdependence of the 'two hits'.

Papadopoulou A., Bicknell D.C., Bodmer W.F., Tomlinson I.P.M.

Proc. Natl. Acad. Sci. U.S.A. 97:3352-3357(2000).

Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer.

Sparks A.B., Morin P.J., Vogelstein B., Kinzler K.W.

Cancer Res. 58:1130-1134(1998).

Longitudinal karyotype and genetic signature analysis of cultured human colon adenocarcinoma cell lines LS180 and LS174T.

Rutzky L.P., Kaye C.I., Siciliano M.J., Chao M., Kahan B.D.

Cancer Res. 40:1443-1448(1980).

Intercellular karyotypic similarity in near-diploid cell lines of human tumor origins.

Chen T.-R., Hay R.J., Macy M.L.

Cancer Genet. Cytogenet. 10:351-362(1983).

Human colonic adenocarcinoma cells. I. Establishment and description of a new line.

Tom B.H., Rutzky L.P., Jakstys M.M., Oyasu R., Kaye C.I., Kahan B.D.

In Vitro 12:180-191(1976).