LoVoHomo sapiens (Human)Cancer cell line

Also known as: LOVO

🤖 AI SummaryBased on 13 publications

Quick Overview

Human colorectal cancer cell line with diverse molecular characteristics.

Detailed Summary

LoVo is a human colorectal cancer cell line derived from a colon adenocarcinoma. It is widely used in cancer research due to its distinct molecular features and ability to model various aspects of colorectal cancer biology. The cell line exhibits specific genetic and epigenetic alterations that make it a valuable tool for studying tumor progression, drug resistance, and therapeutic responses. Its use in preclinical studies helps in understanding the mechanisms underlying cancer development and in developing targeted therapies.

Research Applications

Cancer biology researchDrug developmentMolecular mechanisms of tumor progressionTherapeutic response studies

Key Characteristics

Genomic instabilityEpigenetic alterationsExpression of specific oncogenes
Generated on 6/15/2025

Basic Information

Database IDCVCL_0399
SpeciesHomo sapiens (Human)
Tissue SourceLeft supraclavicular lymph node[UBERON:UBERON_8480056]

Donor Information

Age56
Age CategoryAdult
SexMale
Racecaucasian
Subtype FeaturesMSI

Disease Information

DiseaseColon adenocarcinoma
LineageBowel
SubtypeColon Adenocarcinoma
OncoTree CodeCOAD

DepMap Information

Source TypeATCC
Source IDACH-000950_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleACVR2Ap.Lys437Argfs*5 (c.1310delA)Homozygous-PubMed=12615714
MutationSimpleAPCp.Arg1114Ter (c.3340C>T)Heterozygous-from parent cell line LoVo
MutationSimpleAPCp.Met1431fs*42 (c.4289delC) (p.T1430fs)Heterozygous-from parent cell line LoVo
MutationSimpleAPCp.Arg2816Gln (c.8447G>A)Heterozygous-from parent cell line LoVo
MutationSimpleB2Mp.Leu15Phefs*41 (c.43_44delCT)HeterozygousTotal loss of HLA class 1 expressionfrom parent cell line LoVo
MutationSimpleFBXW7p.Arg505Cys (c.1513C>T)Heterozygous-from parent cell line Jurkat
MutationSimpleKRASp.Gly13Asp (c.38G>A)HeterozygousSomaticfrom parent cell line MDA-MB-231
MutationSimpleSMAD2p.Ala292Val (c.875C>T)Heterozygous-from parent cell line LoVo
MutationSimpleTGFBR2p.Lys128Serfs*35 (c.383delA)Homozygous-PubMed=12615714
MutationNone reportedTP53---PubMed=19787792

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X,Y
CSF1PO
10,11,13,14
D13S317
8,11
D16S539
9,11,12
D18S51
13,17,18
D19S433
14,15
D21S11
29,31.2
D2S1338
16,17,18
D3S1358
14,15,16,17
D5S818
11,12,13
D7S820
9.3,10,11
D8S1179
9,10
FGA
18,19,20
Penta D
9,10,14
Penta E
9,16
SE33
19.2,20.2,25.2
TH01
9.3
TPOX
8,9
vWA
16,17,18,19
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

The cancer SENESCopedia: a delineation of cancer cell senescence.";

Leite de Oliveira R., Wessels L.F.A., Bernards R.

Cell Rep. 36:109441.1-109441.22(2021).

Comparison of different colorectal cancer with liver metastases models using six colorectal cancer cell lines.

Xu Y.-T., Zhang L., Wang Q.-L., Zheng M.-J.

Pathol. Oncol. Res. 26:2177-2183(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Differential effector engagement by oncogenic KRAS.";

McCormick F.

Cell Rep. 22:1889-1902(2018).

Pharmacoproteomic characterisation of human colon and rectal cancer.

Weichert W., Knapp S., Feller S.M., Kuster B.

Mol. Syst. Biol. 13:951-951(2017).

Genomic determinants of protein abundance variation in colorectal cancer cells.

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Choudhary J.S.

Cell Rep. 20:2201-2214(2017).

Multi-omics of 34 colorectal cancer cell lines -- a resource for biomedical studies.

Myklebost O., Skotheim R.I., Sveen A., Lothe R.A.

Mol. Cancer 16:116.1-116.16(2017).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

N-glycosylation profiling of colorectal cancer cell lines reveals association of fucosylation with differentiation and caudal type homebox 1 (CDX1)/villin mRNA expression.

Tollenaar R.A.E.M., Rombouts Y., Wuhrer M.

Mol. Cell. Proteomics 15:124-140(2016).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

Highly expressed genes in rapidly proliferating tumor cells as new targets for colorectal cancer treatment.

Sanchez A., Schwartz S. Jr., Bilic J., Mariadason J.M., Arango D.

Clin. Cancer Res. 21:3695-3704(2015).

The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets.

Linnebacher M., Cordero F., Di Nicolantonio F., Bardelli A.

Nat. Commun. 6:7002.1-7002.10(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer.

Mariadason J.M., Sieber O.M.

Cancer Res. 74:3238-3247(2014).

Epigenetic and genetic features of 24 colon cancer cell lines.";

Hektoen M., Lind G.E., Lothe R.A.

Oncogenesis 2:e71.1-e71.8(2013).

Establishment of a human carcinoembryonic antigen-producing colon adenocarcinoma cell line.

Drewinko B., Romsdahl M.M., Yang L.-Y., Ahearn M.J., Trujillo J.M.

Cancer Res. 36:467-475(1976).

Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.

Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.

Cancer Res. 48:589-601(1988).

Karyotype consistency in human colorectal carcinoma cell lines established in vitro.

Chen T.-R., Hay R.J., Macy M.L.

Cancer Genet. Cytogenet. 6:93-117(1982).

Increased incidence of p53 mutations is associated with hepatic metastasis in colorectal neoplastic progression.

Steele G., Summerhayes I.C.

Oncogene 11:647-652(1995).

Beta 2-microglobulin gene mutations: a study of established colorectal cell lines and fresh tumors.

Bicknell D.C., Rowan A.J., Bodmer W.F.

Proc. Natl. Acad. Sci. U.S.A. 91:4751-4755(1994).

Tissue typing the HLA-A locus from genomic DNA by sequence-specific PCR: comparison of HLA genotype and surface expression on colorectal tumor cell lines.

Bodmer W.F.

Proc. Natl. Acad. Sci. U.S.A. 90:2842-2845(1993).

Inverse correlation between RER+ status and p53 mutation in colorectal cancer cell lines.

Thomas G., Hamelin R.

Oncogene 13:2727-2730(1996).

BAT-26, an indicator of the replication error phenotype in colorectal cancers and cell lines.

Hamelin R.

Cancer Res. 57:300-303(1997).

Screening the p53 status of human cell lines using a yeast functional assay.

Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.

Mol. Carcinog. 19:243-253(1997).

Beta-catenin mutations in cell lines established from human colorectal cancers.

Ilyas M., Tomlinson I.P.M., Rowan A.J., Pignatelli M., Bodmer W.F.

Proc. Natl. Acad. Sci. U.S.A. 94:10330-10334(1997).

Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer.

Sparks A.B., Morin P.J., Vogelstein B., Kinzler K.W.

Cancer Res. 58:1130-1134(1998).

Chromosome number and structure both are markedly stable in RER colorectal cancers and are not destabilized by mutation of p53.

Veigl M.L., Willson J.K.V., Schwartz S., Markowitz S.D.

Oncogene 17:719-725(1998).

Centrosome amplification and instability occurs exclusively in aneuploid, but not in diploid colorectal cancer cell lines, and correlates with numerical chromosomal aberrations.

Neumann T., Jauho A., Auer G., Ried T.

Genes Chromosomes Cancer 27:183-190(2000).

Mutations in hMSH6 alone are not sufficient to cause the microsatellite instability in colorectal cancer cell lines.

Ku J.-L., Yoon K.-A., Kim D.-Y., Park J.-G.

Eur. J. Cancer 35:1724-1729(1999).

APC mutations in sporadic colorectal tumors: a mutational 'hotspot' and interdependence of the 'two hits'.

Papadopoulou A., Bicknell D.C., Bodmer W.F., Tomlinson I.P.M.

Proc. Natl. Acad. Sci. U.S.A. 97:3352-3357(2000).

Spectral karyotyping suggests additional subsets of colorectal cancers characterized by pattern of chromosome rearrangement.

Bicknell D.C., Bodmer W.F., Arends M.J., Wyllie A.H., Edwards P.A.W.

Proc. Natl. Acad. Sci. U.S.A. 98:2538-2543(2001).

Searching for microsatellite mutations in coding regions in lung, breast, ovarian and colorectal cancers.

Minna J.D.

Oncogene 20:1005-1009(2001).

Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures.

Wolf E., Gabius H.-J.

J. Cancer Res. Clin. Oncol. 127:375-386(2001).

Short tandem repeat profiling provides an international reference standard for human cell lines.

Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.

Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001).

Extensive characterization of genetic alterations in a series of human colorectal cancer cell lines.

Hamelin R.

Oncogene 20:5025-5032(2001).

Immunocytochemical analysis of cell lines derived from solid tumors.

Quentmeier H., Osborn M., Reinhardt J., Zaborski M., Drexler H.G.

J. Histochem. Cytochem. 49:1369-1378(2001).

Mutations of the BRAF gene in human cancer.";

Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.

Nature 417:949-954(2002).

Spectral karyotype analysis of colon cancer cell lines of the tumor suppressor and mutator pathway.

Koehrle J., Al-Taie O.

Cytogenet. Genome Res. 98:22-28(2002).

Evidence of selection for clones having genetic inactivation of the activin A type II receptor (ACVR2) gene in gastrointestinal cancers.

Willson J.K.V., Yeo C.J., Hruban R.H., Kern S.E.

Cancer Res. 63:994-999(2003).

Identification of microsatellite instability and mismatch repair gene mutations in breast cancer cell lines.

Santibanez-Koref M.F., Schlag P.M., Scherneck S.

Genes Chromosomes Cancer 37:29-35(2003).

SKY and genetic fingerprinting reveal a cross-contamination of the putative normal colon epithelial cell line NCOL-1.

Kudlich T., Schauber J., Luehrs H., Menzel T., Scheppach W.

Cancer Genet. Cytogenet. 158:84-87(2005).

p53-defective tumors with a functional apoptosome-mediated pathway: a new therapeutic target.

Tomoda H., Yamori T., Tsuruo T.

J. Natl. Cancer Inst. 97:765-777(2005).

Analysis of p53 mutations and their expression in 56 colorectal cancer cell lines.

Liu Y., Bodmer W.F.

Proc. Natl. Acad. Sci. U.S.A. 103:976-981(2006).

Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues.

Garcia-Foncillas J.

Mol. Cancer 5:29.1-29.10(2006).

Cell growth, global phosphotyrosine elevation, and c-Met phosphorylation through Src family kinases in colorectal cancer cells.

Emaduddin M., Bicknell D.C., Bodmer W.F., Feller S.M.

Proc. Natl. Acad. Sci. U.S.A. 105:2358-2362(2008).

Definitive molecular cytogenetic characterization of 15 colorectal cancer cell lines.

Camps J., McNeil N.E., Difilippantonio M.J., Ried T.

Genes Chromosomes Cancer 49:204-223(2010).

Rapid characterisation of cell cultures by matrix-assisted laser desorption/ionisation mass spectrometric typing.

Karger A., Bettin B., Lenk M., Mettenleiter T.C.

J. Virol. Methods 164:116-121(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Genomic and biological characterization of exon 4 KRAS mutations in human cancer.

Lash A., Ladanyi M., Saltz L.B., Heguy A., Paty P.B., Solit D.B.

Cancer Res. 70:5901-5911(2010).

5-fluorouracil response in a large panel of colorectal cancer cell lines is associated with mismatch repair deficiency.

Bracht K., Nicholls A.M., Liu Y., Bodmer W.F.

Br. J. Cancer 103:340-346(2010).

Human embryonic stem cells and metastatic colorectal cancer cells shared the common endogenous human microRNA-26b.

Peng J.-Y., Chen H.-Q., Zhou Y.-K., Liu W.-J., Qin H.-L.

J. Cell. Mol. Med. 15:1941-1954(2011).