LoVoHomo sapiens (Human)Cancer cell line
Also known as: LOVO
Quick Overview
Human colorectal cancer cell line with diverse molecular characteristics.
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_0399 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Left supraclavicular lymph node[UBERON:UBERON_8480056] |
Donor Information
Age | 56 |
---|---|
Age Category | Adult |
Sex | Male |
Race | caucasian |
Subtype Features | MSI |
Disease Information
Disease | Colon adenocarcinoma |
---|---|
Lineage | Bowel |
Subtype | Colon Adenocarcinoma |
OncoTree Code | COAD |
DepMap Information
Source Type | ATCC |
---|---|
Source ID | ACH-000950_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
MutationSimple | ACVR2A | p.Lys437Argfs*5 (c.1310delA) | Homozygous | - | PubMed=12615714 |
MutationSimple | APC | p.Arg1114Ter (c.3340C>T) | Heterozygous | - | from parent cell line LoVo |
MutationSimple | APC | p.Met1431fs*42 (c.4289delC) (p.T1430fs) | Heterozygous | - | from parent cell line LoVo |
MutationSimple | APC | p.Arg2816Gln (c.8447G>A) | Heterozygous | - | from parent cell line LoVo |
MutationSimple | B2M | p.Leu15Phefs*41 (c.43_44delCT) | Heterozygous | Total loss of HLA class 1 expression | from parent cell line LoVo |
MutationSimple | FBXW7 | p.Arg505Cys (c.1513C>T) | Heterozygous | - | from parent cell line Jurkat |
MutationSimple | KRAS | p.Gly13Asp (c.38G>A) | Heterozygous | Somatic | from parent cell line MDA-MB-231 |
MutationSimple | SMAD2 | p.Ala292Val (c.875C>T) | Heterozygous | - | from parent cell line LoVo |
MutationSimple | TGFBR2 | p.Lys128Serfs*35 (c.383delA) | Homozygous | - | PubMed=12615714 |
MutationNone reported | TP53 | - | - | - | PubMed=19787792 |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
Pan-cancer proteomic map of 949 human cell lines.";
Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.
Cancer Cell 40:835-849.e8(2022).
The cancer SENESCopedia: a delineation of cancer cell senescence.";
Leite de Oliveira R., Wessels L.F.A., Bernards R.
Cell Rep. 36:109441.1-109441.22(2021).
Comparison of different colorectal cancer with liver metastases models using six colorectal cancer cell lines.
Xu Y.-T., Zhang L., Wang Q.-L., Zheng M.-J.
Pathol. Oncol. Res. 26:2177-2183(2020).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.
Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.
Nature 568:511-516(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
Differential effector engagement by oncogenic KRAS.";
McCormick F.
Cell Rep. 22:1889-1902(2018).
Pharmacoproteomic characterisation of human colon and rectal cancer.
Weichert W., Knapp S., Feller S.M., Kuster B.
Mol. Syst. Biol. 13:951-951(2017).
Genomic determinants of protein abundance variation in colorectal cancer cells.
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Choudhary J.S.
Cell Rep. 20:2201-2214(2017).
Multi-omics of 34 colorectal cancer cell lines -- a resource for biomedical studies.
Myklebost O., Skotheim R.I., Sveen A., Lothe R.A.
Mol. Cancer 16:116.1-116.16(2017).
Characterization of human cancer cell lines by reverse-phase protein arrays.
Liang H.
Cancer Cell 31:225-239(2017).
A landscape of pharmacogenomic interactions in cancer.";
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
Cell 166:740-754(2016).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
N-glycosylation profiling of colorectal cancer cell lines reveals association of fucosylation with differentiation and caudal type homebox 1 (CDX1)/villin mRNA expression.
Tollenaar R.A.E.M., Rombouts Y., Wuhrer M.
Mol. Cell. Proteomics 15:124-140(2016).
Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.
Golub T.R., Root D.E., Hahn W.C.
Sci. Data 1:140035-140035(2014).
Highly expressed genes in rapidly proliferating tumor cells as new targets for colorectal cancer treatment.
Sanchez A., Schwartz S. Jr., Bilic J., Mariadason J.M., Arango D.
Clin. Cancer Res. 21:3695-3704(2015).
The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets.
Linnebacher M., Cordero F., Di Nicolantonio F., Bardelli A.
Nat. Commun. 6:7002.1-7002.10(2015).
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).
A comprehensive transcriptional portrait of human cancer cell lines.
Settleman J., Seshagiri S., Zhang Z.-M.
Nat. Biotechnol. 33:306-312(2015).
Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer.
Mariadason J.M., Sieber O.M.
Cancer Res. 74:3238-3247(2014).
Epigenetic and genetic features of 24 colon cancer cell lines.";
Hektoen M., Lind G.E., Lothe R.A.
Oncogenesis 2:e71.1-e71.8(2013).
Establishment of a human carcinoembryonic antigen-producing colon adenocarcinoma cell line.
Drewinko B., Romsdahl M.M., Yang L.-Y., Ahearn M.J., Trujillo J.M.
Cancer Res. 36:467-475(1976).
Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.
Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.
Cancer Res. 48:589-601(1988).
Karyotype consistency in human colorectal carcinoma cell lines established in vitro.
Chen T.-R., Hay R.J., Macy M.L.
Cancer Genet. Cytogenet. 6:93-117(1982).
Increased incidence of p53 mutations is associated with hepatic metastasis in colorectal neoplastic progression.
Steele G., Summerhayes I.C.
Oncogene 11:647-652(1995).
Beta 2-microglobulin gene mutations: a study of established colorectal cell lines and fresh tumors.
Bicknell D.C., Rowan A.J., Bodmer W.F.
Proc. Natl. Acad. Sci. U.S.A. 91:4751-4755(1994).
Tissue typing the HLA-A locus from genomic DNA by sequence-specific PCR: comparison of HLA genotype and surface expression on colorectal tumor cell lines.
Bodmer W.F.
Proc. Natl. Acad. Sci. U.S.A. 90:2842-2845(1993).
Inverse correlation between RER+ status and p53 mutation in colorectal cancer cell lines.
Thomas G., Hamelin R.
Oncogene 13:2727-2730(1996).
BAT-26, an indicator of the replication error phenotype in colorectal cancers and cell lines.
Hamelin R.
Cancer Res. 57:300-303(1997).
Screening the p53 status of human cell lines using a yeast functional assay.
Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.
Mol. Carcinog. 19:243-253(1997).
Beta-catenin mutations in cell lines established from human colorectal cancers.
Ilyas M., Tomlinson I.P.M., Rowan A.J., Pignatelli M., Bodmer W.F.
Proc. Natl. Acad. Sci. U.S.A. 94:10330-10334(1997).
Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer.
Sparks A.B., Morin P.J., Vogelstein B., Kinzler K.W.
Cancer Res. 58:1130-1134(1998).
Chromosome number and structure both are markedly stable in RER colorectal cancers and are not destabilized by mutation of p53.
Veigl M.L., Willson J.K.V., Schwartz S., Markowitz S.D.
Oncogene 17:719-725(1998).
Centrosome amplification and instability occurs exclusively in aneuploid, but not in diploid colorectal cancer cell lines, and correlates with numerical chromosomal aberrations.
Neumann T., Jauho A., Auer G., Ried T.
Genes Chromosomes Cancer 27:183-190(2000).
Mutations in hMSH6 alone are not sufficient to cause the microsatellite instability in colorectal cancer cell lines.
Ku J.-L., Yoon K.-A., Kim D.-Y., Park J.-G.
Eur. J. Cancer 35:1724-1729(1999).
APC mutations in sporadic colorectal tumors: a mutational 'hotspot' and interdependence of the 'two hits'.
Papadopoulou A., Bicknell D.C., Bodmer W.F., Tomlinson I.P.M.
Proc. Natl. Acad. Sci. U.S.A. 97:3352-3357(2000).
Spectral karyotyping suggests additional subsets of colorectal cancers characterized by pattern of chromosome rearrangement.
Bicknell D.C., Bodmer W.F., Arends M.J., Wyllie A.H., Edwards P.A.W.
Proc. Natl. Acad. Sci. U.S.A. 98:2538-2543(2001).
Searching for microsatellite mutations in coding regions in lung, breast, ovarian and colorectal cancers.
Minna J.D.
Oncogene 20:1005-1009(2001).
Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures.
Wolf E., Gabius H.-J.
J. Cancer Res. Clin. Oncol. 127:375-386(2001).
Short tandem repeat profiling provides an international reference standard for human cell lines.
Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.
Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001).
Extensive characterization of genetic alterations in a series of human colorectal cancer cell lines.
Hamelin R.
Oncogene 20:5025-5032(2001).
Immunocytochemical analysis of cell lines derived from solid tumors.
Quentmeier H., Osborn M., Reinhardt J., Zaborski M., Drexler H.G.
J. Histochem. Cytochem. 49:1369-1378(2001).
Mutations of the BRAF gene in human cancer.";
Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.
Nature 417:949-954(2002).
Spectral karyotype analysis of colon cancer cell lines of the tumor suppressor and mutator pathway.
Koehrle J., Al-Taie O.
Cytogenet. Genome Res. 98:22-28(2002).
Evidence of selection for clones having genetic inactivation of the activin A type II receptor (ACVR2) gene in gastrointestinal cancers.
Willson J.K.V., Yeo C.J., Hruban R.H., Kern S.E.
Cancer Res. 63:994-999(2003).
Identification of microsatellite instability and mismatch repair gene mutations in breast cancer cell lines.
Santibanez-Koref M.F., Schlag P.M., Scherneck S.
Genes Chromosomes Cancer 37:29-35(2003).
SKY and genetic fingerprinting reveal a cross-contamination of the putative normal colon epithelial cell line NCOL-1.
Kudlich T., Schauber J., Luehrs H., Menzel T., Scheppach W.
Cancer Genet. Cytogenet. 158:84-87(2005).
p53-defective tumors with a functional apoptosome-mediated pathway: a new therapeutic target.
Tomoda H., Yamori T., Tsuruo T.
J. Natl. Cancer Inst. 97:765-777(2005).
Analysis of p53 mutations and their expression in 56 colorectal cancer cell lines.
Liu Y., Bodmer W.F.
Proc. Natl. Acad. Sci. U.S.A. 103:976-981(2006).
Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues.
Garcia-Foncillas J.
Mol. Cancer 5:29.1-29.10(2006).
Cell growth, global phosphotyrosine elevation, and c-Met phosphorylation through Src family kinases in colorectal cancer cells.
Emaduddin M., Bicknell D.C., Bodmer W.F., Feller S.M.
Proc. Natl. Acad. Sci. U.S.A. 105:2358-2362(2008).
Definitive molecular cytogenetic characterization of 15 colorectal cancer cell lines.
Camps J., McNeil N.E., Difilippantonio M.J., Ried T.
Genes Chromosomes Cancer 49:204-223(2010).
Rapid characterisation of cell cultures by matrix-assisted laser desorption/ionisation mass spectrometric typing.
Karger A., Bettin B., Lenk M., Mettenleiter T.C.
J. Virol. Methods 164:116-121(2010).
Signatures of mutation and selection in the cancer genome.";
Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
Nature 463:893-898(2010).
Genomic and biological characterization of exon 4 KRAS mutations in human cancer.
Lash A., Ladanyi M., Saltz L.B., Heguy A., Paty P.B., Solit D.B.
Cancer Res. 70:5901-5911(2010).
5-fluorouracil response in a large panel of colorectal cancer cell lines is associated with mismatch repair deficiency.
Bracht K., Nicholls A.M., Liu Y., Bodmer W.F.
Br. J. Cancer 103:340-346(2010).