MDA-MB-453Homo sapiens (Human)Cancer cell line
Also known as: MDA-MB 453, MDA MB 453, MDA-MB453, MDAMB453, MDA-453, MDA453, MD Anderson-Metastatic Breast-453, MDA-MB-345
Quick Overview
Human breast cancer cell line with known genetic and molecular characteristics.
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_0418 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Pericardial effusion[UBERON:UBERON_0002409] |
Donor Information
Age | 48 |
---|---|
Age Category | Adult |
Sex | Female |
Race | caucasian |
Subtype Features | HER2+ |
Disease Information
Disease | Breast adenocarcinoma |
---|---|
Lineage | Breast |
Subtype | Invasive Breast Carcinoma |
OncoTree Code | BRCA |
DepMap Information
Source Type | ATCC |
---|---|
Source ID | ACH-000910_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
MutationSimple | AR | p.Gln868His (c.2604G>T) | Unspecified | - | from parent cell line MDA-MB-453 |
MutationSimple | CDH1 | p.Trp638Ter (c.1913G>A) | Homozygous | - | from parent cell line MDA-MB-453 |
MutationSimple | KRAS | p.Gly13Asp (c.38G>A) | Heterozygous | Somatic | from parent cell line MDA-MB-231 |
MutationSimple | PIK3CA | p.His1047Arg (c.3140A>G) | Unspecified | - | PubMed=25926053, PubMed=20570890 |
MutationSimple | PTEN | p.Glu307Lys (c.919G>A) | Heterozygous | - | from parent cell line MDA-MB-453 |
MutationUnexplicit | TP53 | Ex10-11del | Homozygous | - | from parent cell line MDA-MB-453 |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.
Golub T.R., Root D.E., Hahn W.C.
Sci. Data 1:140035-140035(2014).
Pan-cancer proteomic map of 949 human cell lines.";
Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.
Cancer Cell 40:835-849.e8(2022).
Quantitative proteomics of the Cancer Cell Line Encyclopedia.";
Sellers W.R., Gygi S.P.
Cell 180:387-402.e16(2020).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.
Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.
Nature 568:511-516(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
Genetic ancestry analysis reveals misclassification of commonly used cancer cell lines.
Mitra R., Nonn L., Kimbro K.S., Kittles R.A.
Cancer Epidemiol. Biomarkers Prev. 28:1003-1009(2019).
Multidimensional phenotyping of breast cancer cell lines to guide preclinical research.
Lakhani S.R.
Breast Cancer Res. Treat. 167:289-301(2018).
Characterization of human cancer cell lines by reverse-phase protein arrays.
Liang H.
Cancer Cell 31:225-239(2017).
A landscape of pharmacogenomic interactions in cancer.";
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
Cell 166:740-754(2016).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
Metabolic profiling of breast cancer: differences in central metabolism between subtypes of breast cancer cell lines.
Kammerer B.
J. Chromatogr. B 1000:95-104(2015).
Cell lines from human breast.";
Leibovitz A.
(In book chapter) Atlas of human tumor cell lines; Hay R.J., Park J.-G., Gazdar A.F. (eds.); pp.161-184; Academic Press; New York; USA (1994).
Breast cancer stem cells: tumourspheres and implications for therapy.";
Morrison B.J.
Thesis PhD (2010); Griffith University; Brisbane; Australia.
Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization.
Cailleau R.M., Olive M., Cruciger Q.V.J.
In Vitro 14:911-915(1978).
Mutations in p53 as potential molecular markers for human breast cancer.
Runnebaum I.B., Nagarajan M., Bowman M., Soto D., Sukumar S.
Proc. Natl. Acad. Sci. U.S.A. 88:10657-10661(1991).
Lack of relationship between CDK activity and G1 cyclin expression in breast cancer cells.
Sweeney K.J., Swarbrick A., Sutherland R.L., Musgrove E.A.
Oncogene 16:2865-2878(1998).
Altered gene expression in drug-resistant human breast cancer cells.
Wosikowski K., Schuurhuis D.H., Kops G.J.P.L., Saceda M., Bates S.E.
Clin. Cancer Res. 3:2405-2414(1997).
Comparative genomic hybridization analysis of 38 breast cancer cell lines: a basis for interpreting complementary DNA microarray data.
Gooden G.C., Ethier S.P., Kallioniemi A.H., Kallioniemi O.-P.
Cancer Res. 60:4519-4525(2000).
Assembly of microarrays for genome-wide measurement of DNA copy number.
Pinkel D., Albertson D.G.
Nat. Genet. 29:263-264(2001).
A formalin-fixed, paraffin-processed cell line standard for quality control of immunohistochemical assay of HER-2/neu expression in breast cancer.
Dodson A.R., Navabi H., Miller K.D., Balaton A.J.
Am. J. Clin. Pathol. 117:81-89(2002).
Reciprocal translocations in breast tumor cell lines: cloning of a t(3;20) that targets the FHIT gene.
Birnbaum D., Chaffanet M.
Genes Chromosomes Cancer 35:204-218(2002).
A recurrent chromosome translocation breakpoint in breast and pancreatic cancer cell lines targets the neuregulin/NRG1 gene.
Edwards P.A.W., Chaffanet M.
Genes Chromosomes Cancer 37:333-345(2003).
Molecular characterization of breast cancer cell lines by a low-density microarray.
Remacle J.
Int. J. Oncol. 27:881-892(2005).
BRCA1 mutation analysis of 41 human breast cancer cell lines reveals three new deleterious mutants.
van den Ouweland A.M.W., Merajver S.D., Ethier S.P., Schutte M.
Cancer Res. 66:41-45(2006).
Thirteen new p53 gene mutants identified among 41 human breast cancer cell lines.
Wasielewski M., Elstrodt F., Klijn J.G.M., Berns E.M.J.J., Schutte M.
Breast Cancer Res. Treat. 99:97-101(2006).
A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes.
Johnson M.D., Lippman M.E., Ethier S.P., Gazdar A.F., Gray J.W.
Cancer Cell 10:515-527(2006).
The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression.
Petersen O.W., Gray J.W., Bissell M.J.
Mol. Oncol. 1:84-96(2007).
Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery.
Pollack J.R.
PLoS ONE 4:E6146-E6146(2009).
Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines.
den Bakker M.A., Foekens J.A., Martens J.W.M., Schutte M.
Breast Cancer Res. Treat. 121:53-64(2010).
Signatures of mutation and selection in the cancer genome.";
Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
Nature 463:893-898(2010).
A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
Haber D.A.
Cancer Res. 70:2158-2164(2010).
Reassessment of estrogen receptor expression in human breast cancer cell lines.
Ford C.H.J., Al-Bader M., Al-Ayadhi B., Francis I.
Anticancer Res. 31:521-527(2011).
Update on the molecular profile of the MDA-MB-453 cell line as a model for apocrine breast carcinoma studies.
Vranic S., Gatalica Z., Wang Z.-Y.
Oncol. Lett. 2:1131-1137(2011).
Proteomic portrait of human breast cancer progression identifies novel prognostic markers.
Geiger T., Madden S.F., Gallagher W.M., Cox J., Mann M.
Cancer Res. 72:2428-2439(2012).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
Essential gene profiles in breast, pancreatic, and ovarian cancer cells.
Rottapel R., Neel B.G., Moffat J.
Cancer Discov. 2:172-189(2012).
An androgen receptor mutation in the MDA-MB-453 cell line model of molecular apocrine breast cancer compromises receptor activity.
Hanson A.R., Birrell S.N., Butler L.M., Hickey T.E., Tilley W.D.
Endocr. Relat. Cancer 19:599-613(2012).
miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs.
Martens J.W.M.
Breast Cancer Res. 15:R33.1-R33.17(2013).
Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target.
McCormick F., Gray J.W.
Cancer Cell 24:450-465(2013).
Modeling precision treatment of breast cancer.";
Collisson E.A., van 't Veer L.J., Spellman P.T., Gray J.W.
Genome Biol. 14:R110.1-R110.14(2013).
A comprehensive transcriptional portrait of human cancer cell lines.
Settleman J., Seshagiri S., Zhang Z.-M.
Nat. Biotechnol. 33:306-312(2015).
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).