MDA-MB-468Homo sapiens (Human)Cancer cell line

Also known as: MDA-MB 468, MDA-MB468, MDAMB468, MDA-468, MDA468, MB468, MD Anderson-Metastatic Breast-468

🤖 AI SummaryBased on 10 publications

Quick Overview

Human breast cancer cell line with unique genetic and molecular characteristics.

Detailed Summary

MDA-MB-468 is a human breast cancer cell line derived from a pleural effusion. It is characterized by the absence of estrogen receptor (ER) and progesterone receptor (PR) expression, and it is classified as a basal-like breast cancer. This cell line has been used in various studies to investigate the molecular mechanisms of breast cancer, including the role of genetic mutations and epigenetic alterations. Research has also focused on its response to different therapeutic agents and its potential as a model for studying cancer progression and metastasis. The cell line has been extensively characterized in terms of its genetic profile, including mutations in genes such as TP53 and PIK3CA, and its expression of specific markers like CK5 and CK14, which are indicative of a basal-like phenotype. Additionally, the cell line has been used in studies related to the identification of novel therapeutic targets and the evaluation of drug sensitivity profiles.

Research Applications

Investigation of breast cancer molecular mechanismsStudy of genetic mutations and epigenetic alterationsEvaluation of therapeutic agent responsesModel for cancer progression and metastasisIdentification of novel therapeutic targetsDrug sensitivity profiling

Key Characteristics

ER-negative and PR-negativeBasal-like phenotypeMutations in TP53 and PIK3CAExpression of CK5 and CK14Used in studies of cancer metastasis
Generated on 6/15/2025

Basic Information

Database IDCVCL_0419
SpeciesHomo sapiens (Human)
Tissue SourcePleural effusion[UBERON:UBERON_0000175]

Donor Information

Age51
Age CategoryAdult
SexFemale
Raceblack_or_african_american
Subtype Featuresbasal_A TNBC

Disease Information

DiseaseBreast adenocarcinoma
LineageBreast
SubtypeInvasive Breast Carcinoma
OncoTree CodeBRCA

DepMap Information

Source TypeATCC
Source IDACH-000849_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimplePTENc.253+1G>THomozygousSplice donor mutationfrom parent cell line MDA-MB-468
MutationSimpleRB1c.265_2787del2523Homozygous-from parent cell line MDA-MB-468
MutationSimpleTP53p.Arg273His (c.818G>A)Homozygous-Unknown, PubMed=16264262

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
12
D10S1248
13
D12S391
18
D13S317
12
D16S539
9
D18S51
17
D19S433
12,13
D1S1656
11,14
D21S11
27
D22S1045
10
D2S1338
17,25
D2S441
12,14
D3S1358
15
D5S818
12
D7S820
8
D8S1179
13
FGA
23
Penta D
8,10
Penta E
5
TH01
7
TPOX
8,9
vWA
18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

The proteomic landscape of triple-negative breast cancer.";

Irie H.Y., Lee S.-I., Blau C.A., Villen J.

Cell Rep. 11:630-644(2015).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Clonal populations of a human TNBC model display significant functional heterogeneity and divergent growth dynamics in distinct contexts.

Baslan T., Stegmeier F., Gygi S.P., Caldas C., Brugge J.S.

Oncogene 41:112-124(2022).

New generation breast cancer cell lines developed from patient-derived xenografts.

Ferreira-Gonzalez A., Harrell J.C., Kabos P., Sartorius C.A.

Breast Cancer Res. 22:68.1-68.12(2020).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Genetic ancestry analysis reveals misclassification of commonly used cancer cell lines.

Mitra R., Nonn L., Kimbro K.S., Kittles R.A.

Cancer Epidemiol. Biomarkers Prev. 28:1003-1009(2019).

Improving the metabolic fidelity of cancer models with a physiological cell culture medium.

Kalna G., Nixon C., Blyth K., Gottlieb E., Tardito S.

Sci. Adv. 5:eaau7314.1-eaau7314.14(2019).

Enhancer transcription reveals subtype-specific gene expression programs controlling breast cancer pathogenesis.

Bedford M.T., Shi X.-B., Li W., Barton M.C., Dent S.Y.R., Kraus W.L.

Genome Res. 28:159-170(2018).

Multidimensional phenotyping of breast cancer cell lines to guide preclinical research.

Lakhani S.R.

Breast Cancer Res. Treat. 167:289-301(2018).

Glycoproteins in claudin-low breast cancer cell lines have a unique expression profile.

Yen T.-Y., Bowen S., Yen R., Piryatinska A., Macher B.A., Timpe L.C.

J. Proteome Res. 16:1391-1400(2017).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A map of mobile DNA insertions in the NCI-60 human cancer cell panel.

Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.

Mob. DNA 7:20.1-20.11(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.

Vandesompele J.

Sci. Data 3:160052-160052(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

OncoImmunology 3:e954893.1-e954893.12(2014).

Resistance patterns in drug-adapted cancer cell lines reflect complex evolution in clinical tumors.

Michaelis M.

bioRxiv 2024:01.20.576412-01.20.576412(2024).

Cell lines from human breast.";

Leibovitz A.

(In book chapter) Atlas of human tumor cell lines; Hay R.J., Park J.-G., Gazdar A.F. (eds.); pp.161-184; Academic Press; New York; USA (1994).

Breast cancer stem cells: tumourspheres and implications for therapy.";

Morrison B.J.

Thesis PhD (2010); Griffith University; Brisbane; Australia.

Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization.

Cailleau R.M., Olive M., Cruciger Q.V.J.

In Vitro 14:911-915(1978).

Mutations in p53 as potential molecular markers for human breast cancer.

Runnebaum I.B., Nagarajan M., Bowman M., Soto D., Sukumar S.

Proc. Natl. Acad. Sci. U.S.A. 88:10657-10661(1991).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Lack of relationship between CDK activity and G1 cyclin expression in breast cancer cells.

Sweeney K.J., Swarbrick A., Sutherland R.L., Musgrove E.A.

Oncogene 16:2865-2878(1998).

Comparative genomic hybridization analysis of 38 breast cancer cell lines: a basis for interpreting complementary DNA microarray data.

Gooden G.C., Ethier S.P., Kallioniemi A.H., Kallioniemi O.-P.

Cancer Res. 60:4519-4525(2000).

Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures.

Wolf E., Gabius H.-J.

J. Cancer Res. Clin. Oncol. 127:375-386(2001).

Reciprocal translocations in breast tumor cell lines: cloning of a t(3;20) that targets the FHIT gene.

Birnbaum D., Chaffanet M.

Genes Chromosomes Cancer 35:204-218(2002).

A recurrent chromosome translocation breakpoint in breast and pancreatic cancer cell lines targets the neuregulin/NRG1 gene.

Edwards P.A.W., Chaffanet M.

Genes Chromosomes Cancer 37:333-345(2003).

The acetyltransferase p300/CBP-associated factor is a p53 target gene in breast tumor cells.

Domann F.E., Futscher B.W.

Neoplasia 6:187-194(2004).

Evidence that both genetic instability and selection contribute to the accumulation of chromosome alterations in cancer.

Edwards P.A.W., Caldas C.

Carcinogenesis 26:923-930(2005).

BRCA1 mutation analysis of 41 human breast cancer cell lines reveals three new deleterious mutants.

van den Ouweland A.M.W., Merajver S.D., Ethier S.P., Schutte M.

Cancer Res. 66:41-45(2006).

Thirteen new p53 gene mutants identified among 41 human breast cancer cell lines.

Wasielewski M., Elstrodt F., Klijn J.G.M., Berns E.M.J.J., Schutte M.

Breast Cancer Res. Treat. 99:97-101(2006).

A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes.

Johnson M.D., Lippman M.E., Ethier S.P., Gazdar A.F., Gray J.W.

Cancer Cell 10:515-527(2006).

Molecular cytogenetic characterization of human breast cancer cell line MDA-MB-468 and its variant 468LN, which displays aggressive lymphatic metastasis.

Xu J., Chambers A.F., Tuck A.B., Rodenhiser D.I.

Cancer Genet. Cytogenet. 181:1-7(2008).

The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression.

Petersen O.W., Gray J.W., Bissell M.J.

Mol. Oncol. 1:84-96(2007).

Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery.

Pollack J.R.

PLoS ONE 4:E6146-E6146(2009).

Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines.

den Bakker M.A., Foekens J.A., Martens J.W.M., Schutte M.

Breast Cancer Res. Treat. 121:53-64(2010).

Breast cancer cell lines carry cell line-specific genomic alterations that are distinct from aberrations in breast cancer tissues: comparison of the CGH profiles between cancer cell lines and primary cancer tissues.

Yamamoto S., Oka M., Hirano T., Sasaki K.

BMC Cancer 10:15.1-15.10(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer.

Chavez K.J., Garimella S.V., Lipkowitz S.

Breast Dis. 32:35-48(2010).

Identification of cancer cell-line origins using fluorescence image-based phenomic screening.

Yoon C.N., Chang Y.-T.

PLoS ONE 7:E32096-E32096(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Essential gene profiles in breast, pancreatic, and ovarian cancer cells.

Rottapel R., Neel B.G., Moffat J.

Cancer Discov. 2:172-189(2012).

Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.

Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.

Science 336:1040-1044(2012).

Molecular characterisation of cell line models for triple-negative breast cancers.

Reis-Filho J.S., Tutt A.

BMC Genomics 13:619.1-619.14(2012).

miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs.

Martens J.W.M.

Breast Cancer Res. 15:R33.1-R33.17(2013).

The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.

Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.

Cancer Res. 73:4372-4382(2013).

Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target.

McCormick F., Gray J.W.

Cancer Cell 24:450-465(2013).

Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes.

Harrell J.C., Roman E., Adamo B., Troester M.A., Perou C.M.

Breast Cancer Res. Treat. 142:237-255(2013).

Modeling precision treatment of breast cancer.";

Collisson E.A., van 't Veer L.J., Spellman P.T., Gray J.W.

Genome Biol. 14:R110.1-R110.14(2013).

The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.

Hirshfield K.M., Oltvai Z.N., Vazquez A.

Cancer Metab. 1:20.1-20.13(2013).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Targeting a cell state common to triple-negative breast cancers.";

Colinge J., Serra V., Nijman S.M.B.

Mol. Syst. Biol. 11:789-789(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).