MIA PaCa-2Homo sapiens (Human)Cancer cell line

Also known as: MIA-PaCa-2, MIA-PACA-2, MIA-Pa-Ca-2, MIA Paca2, MIA PaCa2, MiaPaCa-2, MIAPACA-2, MiaPaca.2, MiaPaCa2, Miapaca2, MIAPaCa2, MIAPACA2, Mia PACA 2, MIAPaCa-2, PaCa2, MiaPaCa, MIAMI Pancreatic Carcinoma-2, MiaPaCa-1

🤖 AI SummaryBased on 12 publications

Quick Overview

Human pancreatic cancer cell line with neuroendocrine features and SSTR2 expression.

Detailed Summary

MIA PaCa-2 is a human pancreatic ductal adenocarcinoma cell line derived from a primary tumor. It exhibits neuroendocrine differentiation and expresses somatostatin receptor type 2 (SSTR2). The cell line shows distinct morphological patterns including large and small cells, and has been characterized for its genetic and molecular features. It is used in studies related to cancer cell biology, drug development, and therapeutic target identification. The cell line has been analyzed for its response to various metabolic inhibitors and has shown specific sensitivities in vitro. It is also noted for its potential in studying pancreatic cancer disparities and therapeutic strategies.

Research Applications

Cancer cell biologyDrug developmentTherapeutic target identificationMetabolic inhibitor response studiesPancreatic cancer disparitiesNeuroendocrine differentiation studies

Key Characteristics

Expresses SSTR2 receptorsNeuroendocrine differentiationDistinct morphological patternsSensitivity to metabolic inhibitorsGenetic mutations in KRAS and TP53
Generated on 6/15/2025

Basic Information

Database IDCVCL_0428
SpeciesHomo sapiens (Human)
Tissue SourcePancreas[UBERON:UBERON_0001264]

Donor Information

Age65
Age CategoryAdult
SexMale
Racecaucasian

Disease Information

DiseasePancreatic undifferentiated carcinoma
LineagePancreas
SubtypePancreatic Adenocarcinoma
OncoTree CodePAAD

DepMap Information

Source TypeATCC
Source IDACH-000601_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
Gene deletionCDKN2A-HomozygousPossiblePubMed=26870271
MutationSimpleKRASp.Gly12Cys (c.34G>T)Unspecified-PubMed=21173094
MutationSimpleTP53p.Arg248Trp (c.742C>T)HomozygousSomatic mutation acquired during proliferationfrom parent cell line VCaP

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10
D10S1248
14,15
D12S391
19
D13S317
12,13
D16S539
10,13
D18S51
12
D19S433
15
D1S1656
15,17.3
D21S11
29,31
D22S1045
16
D2S1338
25
D2S441
14
D3S1358
16
D5S818
12,13
D6S1043
12
D7S820
12
D8S1179
16
FGA
22
Penta D
12,16
Penta E
13,18
TH01
9,10
TPOX
9
vWA
15
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

A resource for analysis of microRNA expression and function in pancreatic ductal adenocarcinoma cells.

Mendell J.T.

Cancer Biol. Ther. 8:2013-2024(2009).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Comparison of transcriptomic profiles of MiaPaCa-2 pancreatic cancer cells treated with different statins.

Rimpelova S., Kolar M., Strnad H., Ruml T., Vitek L., Gbelcova H.

Molecules 26:3528.1-3528.22(2021).

Establishment of highly invasive pancreatic cancer cell lines and the expression of IL-32.

Tanaka S., Nishida T., Hatta H., Nakajima T.

Oncol. Lett. 20:2888-2896(2020).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Unraveling altered RNA metabolism in pancreatic cancer cells by liquid-chromatography coupling to ion mobility mass spectrometry.

Wittel U.A., Kammerer B.

Anal. Bioanal. Chem. 411:6319-6328(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Differential effector engagement by oncogenic KRAS.";

McCormick F.

Cell Rep. 22:1889-1902(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Resolution of novel pancreatic ductal adenocarcinoma subtypes by global phosphotyrosine profiling.

Biankin A.V., Wu J.-M., Daly R.J.

Mol. Cell. Proteomics 15:2671-2685(2016).

Establishment and characterization of new cell lines of anaplastic pancreatic cancer, which is a rare malignancy: OCUP-A1 and OCUP-A2.

Nishio K., Hasegawa T., Yashiro M., Nakata B., Ohira M., Hirakawa K.

BMC Cancer 16:268.1-268.13(2016).

MIA PaCa-2 and PANC-1 -- pancreas ductal adenocarcinoma cell lines with neuroendocrine differentiation and somatostatin receptors.

Gradiz R., Silva H.C., Carvalho L., Botelho M.F., Mota-Pinto A.

Sci. Rep. 6:21648-21648(2016).

Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors.

Manning G., Settleman J., Hatzivassiliou G., Evangelista M.

Proc. Natl. Acad. Sci. U.S.A. 112:E4410-E4417(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

Gemcitabine resistant pancreatic cancer cell lines acquire an invasive phenotype with collateral hypersensitivity to histone deacetylase inhibitors.

Patel C., Dorr R.T., Landowski T.H.

Cancer Biol. Ther. 16:43-51(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

KRAS mutational subtype and copy number predict in vitro response of human pancreatic cancer cell lines to MEK inhibition.

Linnartz R., Zubel A., Slamon D.J., Finn R.S.

Br. J. Cancer 111:1788-1801(2014).

Non insulin producing cell line, MIA PaCa-2 is rendered insulin producing in vitro via mesenchymal epithelial transition.

Bose B., Shenoy P.S.

J. Cell. Biochem. 114:1642-1652(2013).

Essential gene profiles in breast, pancreatic, and ovarian cancer cells.

Rottapel R., Neel B.G., Moffat J.

Cancer Discov. 2:172-189(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Alterations of the p53 tumor-suppressor gene and ki-ras oncogene in human pancreatic cancer-derived cell-lines with different metastatic potential.

Shimazoe T., Nawata H., Kono A.

Oncol. Rep. 1:1223-1227(1994).

Phenotype and genotype of pancreatic cancer cell lines.";

Scaife C.L., Firpo M.A., Mulvihill S.J.

Pancreas 39:425-435(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Distribution of characteristic mutations in native ductal adenocarcinoma of the pancreas and pancreatic cancer cell lines.

Saeger H.-D.

Cell Biol. Res. Ther. 2:1000104.1-1000104.5(2013).

Human pancreatic carcinoma (MIA PaCa-2) in continuous culture: sensitivity to asparaginase.

Yunis A.A., Arimura G.K., Russin D.J.

Int. J. Cancer 19:128-135(1977).

Human pancreatic carcinomas and cell lines reveal frequent and multiple alterations in the p53 and Rb-1 tumor-suppressor genes.

Klein-Szanto A.J.P.

Oncogene 7:1503-1511(1992).

Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer.

Lane D.P., Lemoine N.R.

Br. J. Cancer 64:1076-1082(1991).

Lovastatin inhibits pancreatic cancer growth regardless of RAS mutation.

Thompson J.C.

Pancreas 9:657-661(1994).

K-ras and p53 alterations in genomic DNA and transcripts of human pancreatic adenocarcinoma cell lines.

Imamura M., Hiai H., Fukumoto M.

Jpn. J. Cancer Res. 85:1005-1014(1994).

Comparative analysis of mutations in the p53 and K-ras genes in pancreatic cancer.

Berrozpe G., Schaeffer J., Peinado M.A., Real F.X., Perucho M.

Int. J. Cancer 58:185-191(1994).

Frequent alterations of the tumor suppressor genes p53 and DCC in human pancreatic carcinoma.

Arnold R.

Gastroenterology 106:1645-1651(1994).

Screening the p53 status of human cell lines using a yeast functional assay.

Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.

Mol. Carcinog. 19:243-253(1997).

Specific chromosomal aberrations and amplification of the AIB1 nuclear receptor coactivator gene in pancreatic carcinomas.

Meltzer P.S., Ried T.

Am. J. Pathol. 154:525-536(1999).

Characterization of the mutations of the K-ras, p53, p16, and SMAD4 genes in 15 human pancreatic cancer cell lines.

Sun C.-L., Yamato T., Furukawa T., Ohnishi Y., Kijima H., Horii A.

Oncol. Rep. 8:89-92(2001).

Loss of the Y chromosome is a frequent chromosomal imbalance in pancreatic cancer and allows differentiation to chronic pancreatitis.

Leder G., Gansauge F., Sorio C., Scarpa A., Gress T.M.

Int. J. Cancer 91:340-344(2001).

Non-random chromosomal rearrangements in pancreatic cancer cell lines identified by spectral karyotyping.

Sheer D., Moore P.S., Scarpa A., Edwards P.A.W., Lemoine N.R.

Int. J. Cancer 91:350-358(2001).

Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4.

Lohr J.-M., Scarpa A.

Virchows Arch. 439:798-802(2001).

Mutations of the BRAF gene in human cancer.";

Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.

Nature 417:949-954(2002).

A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform.

Sipos B., Moser S., Kalthoff H., Torok V., Lohr J.-M., Kloppel G.

Virchows Arch. 442:444-452(2003).

Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies.

Kern S.E., Goggins M.G., Hruban R.H.

Cancer Res. 63:8614-8622(2003).

Synergistic effects of interferon-alpha in combination with chemoradiation on human pancreatic adenocarcinoma.

Marten A.

World J. Gastroenterol. 11:1521-1528(2005).

Identifying allelic loss and homozygous deletions in pancreatic cancer without matched normals using high-density single-nucleotide polymorphism arrays.

Kern S.E.

Cancer Res. 66:7920-7928(2006).

Profiling and authentication of human cell lines using short tandem repeat (STR) loci: report from the National Cell Bank of Iran.

Azari S., Ahmadi N., Jeddi-Tehrani M., Shokri F.

Biologicals 35:195-202(2007).

Activation of Wnt signalling in stroma from pancreatic cancer identified by gene expression profiling.

Schackert H.K., Kloppel G., Kalthoff H., Saeger H.-D., Grutzmann R.

J. Cell. Mol. Med. 12:2823-2835(2008).

Identification of SMURF1 as a possible target for 7q21.3-22.1 amplification detected in a pancreatic cancer cell line by in-house array-based comparative genomic hybridization.

Shiratori K., Hirohashi S., Inazawa J., Imoto I.

Cancer Sci. 99:986-994(2008).

Adoptive immunotherapy for pancreatic cancer: cytotoxic T lymphocytes stimulated by the MUC1-expressing human pancreatic cancer cell line YPK-1.

Yoshino S., Hazama S.

Oncol. Rep. 20:155-163(2008).

Genome-wide analysis of pancreatic cancer using microarray-based techniques.

Harada T., Chelala C., Crnogorac-Jurcevic T., Lemoine N.R.

Pancreatology 9:13-24(2009).

Identification of genes that confer tumor cell resistance to the aurora B kinase inhibitor, AZD1152.

Albert D.H., Donawho C.K., Glaser K.B., Shah O.J.

Pharmacogenomics J. 9:90-102(2009).

Profiling pancreatic cancer-secreted proteome using 15N amino acids and serum-free media.

Wang Q., Xiao G.G.-S.

Pancreas 39:e17-e23(2010).