MKN45Homo sapiens (Human)Cancer cell line

Also known as: MKN-45, MKN 45, NKM45 (Occasionally.), NKM-45 (Occasionally.), MNK45 (Occasionally.), MNK-45 (Occasionally.), MKN46

🤖 AI SummaryBased on 16 publications

Quick Overview

Human gastric cancer cell line with diverse research applications.

Detailed Summary

MKN45 is a human gastric cancer cell line derived from a poorly differentiated adenocarcinoma. It is widely used in studies related to gastric cancer biology, including investigations into tyrosine kinase activation, drug resistance mechanisms, and tumor cell behavior. Research has shown that MKN45 exhibits unique characteristics such as resistance to certain growth factors and distinct patterns of protein expression. It has been utilized in studies involving c-MET amplification, drug sensitivity, and the role of gastrin in tumor growth. The cell line is also noted for its ability to form tumors in nude mice, making it a valuable model for in vivo studies.

Research Applications

Cancer biologyDrug resistance mechanismsTyrosine kinase activationTumor growth in vivoc-MET amplification studies

Key Characteristics

Poorly differentiatedResistance to growth factorsDistinct protein expression patternsTumor formation in nude mice
Generated on 6/15/2025

Basic Information

Database IDCVCL_0434
SpeciesHomo sapiens (Human)
Tissue SourceLiver[UBERON:UBERON_0002107]

Donor Information

Age62
Age CategoryAdult
SexFemale
Raceasian

Disease Information

DiseaseGastric adenocarcinoma
LineageEsophagus/Stomach
SubtypeDiffuse Type Stomach Adenocarcinoma
OncoTree CodeDSTAD

DepMap Information

Source TypeHSRRB
Source IDACH-000356_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Arg110Cys (c.328C>T)Heterozygous-PubMed=29970484

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
12
D12S391
26
D13S317
8,11
D16S539
10
D18S51
16
D19S433
14,16.2
D21S11
31
D2S1338
18
D3S1358
15,16
D5S818
10,11
D6S1043
14
D7S820
10,11
D8S1179
13,17
FGA
19
Penta D
10
Penta E
10
TH01
7
TPOX
8
vWA
19
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Forty-nine gastric cancer cell lines with integrative genomic profiling for development of c-MET inhibitor.

Kragh M., Horak I.D., Chung H.C., Rha S.Y.

Int. J. Cancer 143:151-159(2018).

Gastric tumor cell lines.";

Sekiguchi M., Suzuki T.

(In book chapter) Atlas of human tumor cell lines; Hay R.J., Park J.-G., Gazdar A.F. (eds.); pp.287-316; Academic Press; New York; USA (1994).

Nrf2-ME-1 axis is associated with 5-FU resistance in gastric cancer cell line.

Pouremamali F., Jeddi F., Samadi N.

Process Biochem. 114:174-184(2022).

Thromboplastic and fibrinolytic activities of cultured human cancer cell lines.

Yasumoto K.

Br. J. Cancer 39:15-23(1979).

Missense mutations and a deletion of the p53 gene in human gastric cancer.

Wada K., Uchida T., Nishisaki H., Nagao M., Kasuga M.

Biochem. Biophys. Res. Commun. 182:215-223(1992).

Karyotypic analysis of gastric carcinoma cell lines carrying an amplified c-met oncogene.

Comoglio P.M., Saglio G.

Cancer Genet. Cytogenet. 64:170-173(1992).

Aberrant elevation of tyrosine-specific phosphorylation in human gastric cancer cells.

Ohnishi Y., Xiao H.-Y., Nagai Y., Takagi H.

Jpn. J. Cancer Res. 82:1428-1435(1991).

Co-stimulation of gastrointestinal tumour cell growth by gastrin, transforming growth factor alpha and insulin like growth factor-I.

Durrant L.G., Watson S.A., Hall A., Morris D.L.

Br. J. Cancer 63:67-70(1991).

p53 gene mutations in gastric cancer metastases and in gastric cancer cell lines derived from metastases.

Nakatani K., Nakano H., Sugimura T., Terada M.

Cancer Res. 51:5800-5805(1991).

Intracellular gastrin in human gastrointestinal tumor cells.";

Watson S.A., Durrant L.G., Wencyk P.M., Watson A.L., Morris D.L.

J. Natl. Cancer Inst. 83:866-871(1991).

The effect of the E2 prostaglandin enprostil, and the somatostatin analogue SMS 201 995, on the growth of a human gastric cell line, MKN45G.

Watson S.A., Durrant L.G., Morris D.L.

Int. J. Cancer 45:90-94(1990).

Comparison of seven cell lines derived from human gastric carcinomas.

Motoyama T., Hojo H., Watanabe H.

Acta Pathol. Jpn. 36:65-83(1986).

Analysis of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced DNA damage in tumor cell strains from Japanese patients and demonstration of MNNG hypersensitivity of Mer xenografts in athymic nude mice.

Kondo S.

Carcinogenesis 6:549-553(1985).

Thromboplastic and fibrinolytic activities of cultured human gastric cancer cell lines.

Naito S., Inoue S., Kinjo M., Tanaka K.

Gann 74:240-247(1983).

HLA-A locus-restricted and tumor-specific CTLs in tumor-infiltrating lymphocytes of patients with non-small cell lung cancer.

Seki N., Hoshino T., Kikuchi M., Hayashi A., Itoh K.

Cell. Immunol. 175:101-110(1997).

Expression of bone morphogenetic proteins of human neoplastic epithelial cells.

Hatakeyama S., Gao Y.-H., Ohara-Nemoto Y., Kataoka H., Satoh M.

Biochem. Mol. Biol. Int. 42:497-505(1997).

Screening the p53 status of human cell lines using a yeast functional assay.

Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.

Mol. Carcinog. 19:243-253(1997).

Activation of the urokinase plasminogen activator/urokinase plasminogen activator receptor system and redistribution of E-cadherin are associated with hepatocyte growth factor-induced motility of pancreas tumor cells overexpressing Met.

Real F.X.

Am. J. Pathol. 153:201-212(1998).

Molecular characteristics of eight gastric cancer cell lines established in Japan.

Yokozaki H.

Pathol. Int. 50:767-777(2000).

Alpha-fetoprotein producing gastric cancer lacks transcription factor ATBF1.

Nakabayashi H., Kawaguchi M., Asai K., Kato T., Itoh M.

Oncogene 20:869-873(2001).

Immunocytochemical analysis of cell lines derived from solid tumors.

Quentmeier H., Osborn M., Reinhardt J., Zaborski M., Drexler H.G.

J. Histochem. Cytochem. 49:1369-1378(2001).

Screening of DNA copy-number aberrations in gastric cancer cell lines by array-based comparative genomic hybridization.

Okanoue T., Inazawa J.

Cancer Sci. 96:100-110(2005).

Chemosensitivity profile of cancer cell lines and identification of genes determining chemosensitivity by an integrated bioinformatical approach using cDNA arrays.

Yamori T.

Mol. Cancer Ther. 4:399-412(2005).

p53-defective tumors with a functional apoptosome-mediated pathway: a new therapeutic target.

Tomoda H., Yamori T., Tsuruo T.

J. Natl. Cancer Inst. 97:765-777(2005).

Correlation between DNA alterations and p53 and p16 protein expression in cancer cell lines.

Murai Y., Hayashi S., Takahashi H., Tsuneyama K., Takano Y.

Pathol. Res. Pract. 201:109-115(2005).

In vitro pharmacogenomic database and chemosensitivity predictive genes in gastric cancer.

Noh S.H., Rha S.Y.

Genomics 93:52-61(2009).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs.

Kong D.-X., Yamori T.

Bioorg. Med. Chem. 20:1947-1951(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Comparison between the gastric cancer cell line MKN-45 and the high-potential peritoneal dissemination gastric cancer cell line MKN-45P.

Koga A., Aoyagi K., Imaizumi T., Miyagi M., Shirouzu K.

Kurume Med. J. 58:73-79(2011).

A novel approach for characterizing microsatellite instability in cancer cells.

Lu Y.-H., Soong T.D., Elemento O.

PLoS ONE 8:E63056-E63056(2013).

A compensatory role of NF-kappaB to p53 in response to 5-FU-based chemotherapy for gastric cancer cell lines.

Sato K., Iwaya T., Koeda K., Wakabayashi G.

PLoS ONE 9:E90155-E90155(2014).

Integrated exome and transcriptome sequencing reveals ZAK isoform usage in gastric cancer.

Firestein R., Zhang Z.-M.

Nat. Commun. 5:3830.1-3830.8(2014).

Molecular integrative clustering of Asian gastric cell lines revealed two distinct chemosensitivity clusters.

Yang H.H., Lee M.A.

PLoS ONE 9:E111146-E111146(2014).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

OncoImmunology 3:e954893.1-e954893.12(2014).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).