OE33Homo sapiens (Human)Cancer cell line

Also known as: OEC33, JROECL33, JROECL 33, OE-33

🤖 AI SummaryBased on 13 publications

Quick Overview

OE33 is a human esophageal adenocarcinoma cell line used in cancer research.

Detailed Summary

OE33 is a human esophageal adenocarcinoma cell line derived from a 55-year-old male patient with locally invasive adenocarcinoma of the esophagus. It is widely used in cancer research for studying the molecular mechanisms of esophageal adenocarcinoma and for drug development. OE33 has been characterized for its genetic and molecular profiles, including mutations in TP53, ABCB1, and SEMA5A, which are associated with the disease. The cell line is known for its ability to form tumors in xenograft models and its utility in studying the effects of various treatments on cancer progression. OE33 is also used in comparative studies with other cell lines to understand the heterogeneity of esophageal cancer and to validate the authenticity of cell lines used in research.

Research Applications

cancer researchdrug developmentmolecular mechanisms of esophageal adenocarcinomagenetic and molecular profilingtumor xenograft models

Key Characteristics

mutated TP53, ABCB1, and SEMA5A genesability to form tumors in xenograft modelsused in comparative studies with other cell linesauthenticity verified in research
Generated on 6/15/2025

Basic Information

Database IDCVCL_0471
SpeciesHomo sapiens (Human)
Tissue SourceEsophagus[UBERON:UBERON_0001043]

Donor Information

Age73
Age CategoryAdult
SexFemale
Racecaucasian

Disease Information

DiseaseAdenocarcinoma of the esophagus
LineageEsophagus/Stomach
SubtypeEsophageal Adenocarcinoma
OncoTree CodeESCA

DepMap Information

Source TypeHPACC
Source IDACH-000383_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Cys135Tyr (c.404G>A)Unspecified-PubMed=21173094

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10
D13S317
14
D16S539
12
D18S51
12
D19S433
12,15,16
D21S11
29,31.2
D2S1338
17,19,20
D3S1358
18
D5S818
11
D7S820
9,10
D8S1179
10,11,12
FGA
23
Penta D
8,9,11
Penta E
12,18
TH01
7
TPOX
8,11
vWA
14,17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types.

van 't Veer L.J., Butte A.J., Goldstein T., Sirota M.

Nat. Commun. 10:3574.1-3574.11(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Improved xenograft efficiency of esophageal adenocarcinoma cell lines through in vivo selection.

Ceelen W., Pattyn P.

Oncol. Rep. 38:71-81(2017).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

Authentication and characterisation of a new oesophageal adenocarcinoma cell line: MFD-1.

Sharrocks A.D., Fitzgerald R.C., Underwood T.J.

Sci. Rep. 6:32417-32417(2016).

Whole-genome sequencing of nine esophageal adenocarcinoma cell lines.";

Lynch A.G., Edwards P.A.W., Fitzgerald R.C.

F1000Research 5:1336.1-1336.12(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Hypermethylation of MAPK13 promoter in oesophageal squamous cell carcinoma is associated with loss of p38delta MAPK expression.

O'Callaghan C., Fanning L.J., Barry O.P.

Cancers (Basel) 7:2124-2133(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

Translational research on esophageal adenocarcinoma: from cell line to clinic.

Boonstra J.J., Tilanus H.W., Dinjens W.N.M.

Dis. Esophagus 28:90-96(2015).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Verification and unmasking of widely used human esophageal adenocarcinoma cell lines.

Shimada Y., van Dekken H., Tilanus H.W., Dinjens W.N.M.

J. Natl. Cancer Inst. 102:271-274(2010).

Gene expression profiling in human esophageal cancers using cDNA microarray.

Itami A., Yamasaki S., Imamura M.

Biochem. Biophys. Res. Commun. 286:792-801(2001).

Five newly established oesophageal carcinoma cell lines: phenotypic and immunological characterization.

Rockett J.C., Larkin K., Darnton S.J., Morris A.G., Matthews H.R.

Br. J. Cancer 75:258-263(1997).

Web Resources