PANC-1Homo sapiens (Human)Cancer cell line
Also known as: Panc-1, PANC.1, Panc 1, PanC1, Panc1, PANC1, Panc-1-P
Quick Overview
PANC-1 is a human pancreatic cancer cell line used in cancer research.
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_0480 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Pancreas[UBERON:UBERON_0001264] |
Donor Information
Age | 56 |
---|---|
Age Category | Adult |
Sex | Male |
Disease Information
Disease | Pancreatic ductal adenocarcinoma |
---|---|
Lineage | Pancreas |
Subtype | Pancreatic Adenocarcinoma |
OncoTree Code | PAAD |
DepMap Information
Source Type | ATCC |
---|---|
Source ID | ACH-000164_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
Gene deletion | CDKN2A | - | Homozygous | Possible | PubMed=26870271 |
MutationSimple | KRAS | p.Gly12Asp (c.35G>A) | Unspecified | - | PubMed=29786757 |
MutationSimple | TP53 | p.Arg273His (c.818G>A) | Homozygous | - | Unknown, PubMed=16264262 |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
Establishment of human pancreatic cancer gemcitabine-resistant cell line with ribonucleotide reductase overexpression.
Wang C.-F., Zhang W.-W., Fu M.-J., Yang A.-Q., Huang H.-H., Xie J.-M.
Oncol. Rep. 33:383-390(2015).
Establishment of highly invasive pancreatic cancer cell lines and the expression of IL-32.
Tanaka S., Nishida T., Hatta H., Nakajima T.
Oncol. Lett. 20:2888-2896(2020).
Comprehensive detection of single amino acid variants and evaluation of their deleterious potential in a PANC-1 cell line.
Shi T.-J., Lubman D.M.
J. Proteome Res. 19:1635-1646(2020).
Quantitative proteomics of the Cancer Cell Line Encyclopedia.";
Sellers W.R., Gygi S.P.
Cell 180:387-402.e16(2020).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
Unraveling altered RNA metabolism in pancreatic cancer cells by liquid-chromatography coupling to ion mobility mass spectrometry.
Wittel U.A., Kammerer B.
Anal. Bioanal. Chem. 411:6319-6328(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
Identification and characterization of transforming growth factor beta induced in circulating tumor cell subline from pancreatic cancer cell line.
Sato T., Muramatsu T., Tanabe M., Inazawa J.
Cancer Sci. 109:3623-3633(2018).
Characterization of human cancer cell lines by reverse-phase protein arrays.
Liang H.
Cancer Cell 31:225-239(2017).
Resolution of novel pancreatic ductal adenocarcinoma subtypes by global phosphotyrosine profiling.
Biankin A.V., Wu J.-M., Daly R.J.
Mol. Cell. Proteomics 15:2671-2685(2016).
Establishment and characterization of new cell lines of anaplastic pancreatic cancer, which is a rare malignancy: OCUP-A1 and OCUP-A2.
Nishio K., Hasegawa T., Yashiro M., Nakata B., Ohira M., Hirakawa K.
BMC Cancer 16:268.1-268.13(2016).
MIA PaCa-2 and PANC-1 -- pancreas ductal adenocarcinoma cell lines with neuroendocrine differentiation and somatostatin receptors.
Gradiz R., Silva H.C., Carvalho L., Botelho M.F., Mota-Pinto A.
Sci. Rep. 6:21648-21648(2016).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors.
Manning G., Settleman J., Hatzivassiliou G., Evangelista M.
Proc. Natl. Acad. Sci. U.S.A. 112:E4410-E4417(2015).
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).
A comprehensive transcriptional portrait of human cancer cell lines.
Settleman J., Seshagiri S., Zhang Z.-M.
Nat. Biotechnol. 33:306-312(2015).
The proteomic profile of pancreatic cancer cell lines corresponding to carcinogenesis and metastasis.
Yamada M., Fujii K., Koyama K., Hirohashi S., Kondo T.
J. Proteomics Bioinformatics 2:1-18(2009).
Establishment of a continuous tumor-cell line (PANC-1) from a human carcinoma of the exocrine pancreas.
Lieber M.M., Mazzetta J., Nelson-Rees W.A., Kaplan M., Todaro G.J.
Int. J. Cancer 15:741-747(1975).
Human pancreatic carcinomas and cell lines reveal frequent and multiple alterations in the p53 and Rb-1 tumor-suppressor genes.
Klein-Szanto A.J.P.
Oncogene 7:1503-1511(1992).
Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer.
Lane D.P., Lemoine N.R.
Br. J. Cancer 64:1076-1082(1991).
Inhibition of growth of human or hamster pancreatic cancer cell lines by alpha-difluoromethylornithine alone and combined with cis-diamminedichloroplatinum(II).
Chang B.K., Black O. Jr., Gutman R.
Cancer Res. 44:5100-5104(1984).
Lovastatin inhibits pancreatic cancer growth regardless of RAS mutation.
Thompson J.C.
Pancreas 9:657-661(1994).
K-ras and p53 alterations in genomic DNA and transcripts of human pancreatic adenocarcinoma cell lines.
Imamura M., Hiai H., Fukumoto M.
Jpn. J. Cancer Res. 85:1005-1014(1994).
Comparative analysis of mutations in the p53 and K-ras genes in pancreatic cancer.
Berrozpe G., Schaeffer J., Peinado M.A., Real F.X., Perucho M.
Int. J. Cancer 58:185-191(1994).
Frequent alterations of the tumor suppressor genes p53 and DCC in human pancreatic carcinoma.
Arnold R.
Gastroenterology 106:1645-1651(1994).
Human ductal adenocarcinomas of the pancreas express extracellular matrix proteins.
Kloppel G.
Br. J. Cancer 69:144-151(1994).
HLA-A locus-restricted and tumor-specific CTLs in tumor-infiltrating lymphocytes of patients with non-small cell lung cancer.
Seki N., Hoshino T., Kikuchi M., Hayashi A., Itoh K.
Cell. Immunol. 175:101-110(1997).
Disruption of the antiproliferative TGF-beta signaling pathways in human pancreatic cancer cells.
Reyes G., de Villalonga P., Agell N., Lluis F., Bachs O., Capella G.
Oncogene 17:1969-1978(1998).
Specific chromosomal aberrations and amplification of the AIB1 nuclear receptor coactivator gene in pancreatic carcinomas.
Meltzer P.S., Ried T.
Am. J. Pathol. 154:525-536(1999).
Characterization of the mutations of the K-ras, p53, p16, and SMAD4 genes in 15 human pancreatic cancer cell lines.
Sun C.-L., Yamato T., Furukawa T., Ohnishi Y., Kijima H., Horii A.
Oncol. Rep. 8:89-92(2001).
Loss of the Y chromosome is a frequent chromosomal imbalance in pancreatic cancer and allows differentiation to chronic pancreatitis.
Leder G., Gansauge F., Sorio C., Scarpa A., Gress T.M.
Int. J. Cancer 91:340-344(2001).
Non-random chromosomal rearrangements in pancreatic cancer cell lines identified by spectral karyotyping.
Sheer D., Moore P.S., Scarpa A., Edwards P.A.W., Lemoine N.R.
Int. J. Cancer 91:350-358(2001).
Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4.
Lohr J.-M., Scarpa A.
Virchows Arch. 439:798-802(2001).
A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform.
Sipos B., Moser S., Kalthoff H., Torok V., Lohr J.-M., Kloppel G.
Virchows Arch. 442:444-452(2003).
A recurrent chromosome translocation breakpoint in breast and pancreatic cancer cell lines targets the neuregulin/NRG1 gene.
Edwards P.A.W., Chaffanet M.
Genes Chromosomes Cancer 37:333-345(2003).
Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies.
Kern S.E., Goggins M.G., Hruban R.H.
Cancer Res. 63:8614-8622(2003).
Genome-wide array-based comparative genomic hybridization reveals multiple amplification targets and novel homozygous deletions in pancreatic carcinoma cell lines.
Veltman J.A., van Kessel A.G., Hoglund M.
Cancer Res. 64:3052-3059(2004).
Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity.
Hirohashi S.
Pancreas 29:193-203(2004).
Microarray analyses reveal strong influence of DNA copy number alterations on the transcriptional patterns in pancreatic cancer: implications for the interpretation of genomic amplifications.
Gorunova L., van Kessel A.G., Schoenmakers E.F.P.M., Hoglund M.
Oncogene 24:1794-1801(2005).
Synergistic effects of interferon-alpha in combination with chemoradiation on human pancreatic adenocarcinoma.
Marten A.
World J. Gastroenterol. 11:1521-1528(2005).
Identifying allelic loss and homozygous deletions in pancreatic cancer without matched normals using high-density single-nucleotide polymorphism arrays.
Kern S.E.
Cancer Res. 66:7920-7928(2006).
Activation of Wnt signalling in stroma from pancreatic cancer identified by gene expression profiling.
Schackert H.K., Kloppel G., Kalthoff H., Saeger H.-D., Grutzmann R.
J. Cell. Mol. Med. 12:2823-2835(2008).
Identification of SMURF1 as a possible target for 7q21.3-22.1 amplification detected in a pancreatic cancer cell line by in-house array-based comparative genomic hybridization.
Shiratori K., Hirohashi S., Inazawa J., Imoto I.
Cancer Sci. 99:986-994(2008).
Adoptive immunotherapy for pancreatic cancer: cytotoxic T lymphocytes stimulated by the MUC1-expressing human pancreatic cancer cell line YPK-1.
Yoshino S., Hazama S.
Oncol. Rep. 20:155-163(2008).
Genome-wide analysis of pancreatic cancer using microarray-based techniques.
Harada T., Chelala C., Crnogorac-Jurcevic T., Lemoine N.R.
Pancreatology 9:13-24(2009).
A resource for analysis of microRNA expression and function in pancreatic ductal adenocarcinoma cells.
Mendell J.T.
Cancer Biol. Ther. 8:2013-2024(2009).
Phenotype and genotype of pancreatic cancer cell lines.";
Scaife C.L., Firpo M.A., Mulvihill S.J.
Pancreas 39:425-435(2010).
Development and functional characterization of insulin-releasing human pancreatic beta cell lines produced by electrofusion.
Flatt P.R.
J. Biol. Chem. 286:21982-21992(2011).
Alterations of the p53 tumor-suppressor gene and ki-ras oncogene in human pancreatic cancer-derived cell-lines with different metastatic potential.
Shimazoe T., Nawata H., Kono A.
Oncol. Rep. 1:1223-1227(1994).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
Essential gene profiles in breast, pancreatic, and ovarian cancer cells.
Rottapel R., Neel B.G., Moffat J.
Cancer Discov. 2:172-189(2012).
Dynamic DNA methylation across diverse human cell lines and tissues.
Crawford G.E., Absher D.M., Wold B.J., Myers R.M.
Genome Res. 23:555-567(2013).