PANC-1Homo sapiens (Human)Cancer cell line

Also known as: Panc-1, PANC.1, Panc 1, PanC1, Panc1, PANC1, Panc-1-P

🤖 AI SummaryBased on 14 publications

Quick Overview

PANC-1 is a human pancreatic cancer cell line used in cancer research.

Detailed Summary

PANC-1 is a human pancreatic ductal adenocarcinoma cell line derived from a primary tumor. It is widely used in research for studying pancreatic cancer biology, drug development, and metabolic profiling. The cell line exhibits characteristics such as KRAS and TP53 mutations, and has been utilized in studies related to metabolic reprogramming, drug resistance, and tumor heterogeneity. PANC-1 is also used to investigate the role of specific genes and pathways in cancer progression, including the impact of mutations on cellular behavior and therapeutic responses.

Research Applications

Cancer biologyDrug developmentMetabolic profilingTumor heterogeneityGene mutation analysis

Key Characteristics

KRAS mutationTP53 mutationMetabolic reprogrammingDrug resistanceEpithelial-mesenchymal transition
Generated on 6/15/2025

Basic Information

Database IDCVCL_0480
SpeciesHomo sapiens (Human)
Tissue SourcePancreas[UBERON:UBERON_0001264]

Donor Information

Age56
Age CategoryAdult
SexMale

Disease Information

DiseasePancreatic ductal adenocarcinoma
LineagePancreas
SubtypePancreatic Adenocarcinoma
OncoTree CodePAAD

DepMap Information

Source TypeATCC
Source IDACH-000164_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
Gene deletionCDKN2A-HomozygousPossiblePubMed=26870271
MutationSimpleKRASp.Gly12Asp (c.35G>A)Unspecified-PubMed=29786757
MutationSimpleTP53p.Arg273His (c.818G>A)Homozygous-Unknown, PubMed=16264262

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10,12
D10S1248
14
D12S391
22
D13S317
11
D16S539
11
D18S51
12
D19S433
11,16
D1S1656
12,14
D21S11
28
D22S1045
16
D2S1338
23,24
D2S441
10,14
D3S1358
17
D5S818
11,13
D6S1043
11,12
D7S820
8,10
D8S1179
14,15
FGA
21
Penta D
14
Penta E
7,14
TH01
7,8
TPOX
8,11
vWA
15
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Establishment of human pancreatic cancer gemcitabine-resistant cell line with ribonucleotide reductase overexpression.

Wang C.-F., Zhang W.-W., Fu M.-J., Yang A.-Q., Huang H.-H., Xie J.-M.

Oncol. Rep. 33:383-390(2015).

Establishment of highly invasive pancreatic cancer cell lines and the expression of IL-32.

Tanaka S., Nishida T., Hatta H., Nakajima T.

Oncol. Lett. 20:2888-2896(2020).

Comprehensive detection of single amino acid variants and evaluation of their deleterious potential in a PANC-1 cell line.

Shi T.-J., Lubman D.M.

J. Proteome Res. 19:1635-1646(2020).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Unraveling altered RNA metabolism in pancreatic cancer cells by liquid-chromatography coupling to ion mobility mass spectrometry.

Wittel U.A., Kammerer B.

Anal. Bioanal. Chem. 411:6319-6328(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Identification and characterization of transforming growth factor beta induced in circulating tumor cell subline from pancreatic cancer cell line.

Sato T., Muramatsu T., Tanabe M., Inazawa J.

Cancer Sci. 109:3623-3633(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

Resolution of novel pancreatic ductal adenocarcinoma subtypes by global phosphotyrosine profiling.

Biankin A.V., Wu J.-M., Daly R.J.

Mol. Cell. Proteomics 15:2671-2685(2016).

Establishment and characterization of new cell lines of anaplastic pancreatic cancer, which is a rare malignancy: OCUP-A1 and OCUP-A2.

Nishio K., Hasegawa T., Yashiro M., Nakata B., Ohira M., Hirakawa K.

BMC Cancer 16:268.1-268.13(2016).

MIA PaCa-2 and PANC-1 -- pancreas ductal adenocarcinoma cell lines with neuroendocrine differentiation and somatostatin receptors.

Gradiz R., Silva H.C., Carvalho L., Botelho M.F., Mota-Pinto A.

Sci. Rep. 6:21648-21648(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors.

Manning G., Settleman J., Hatzivassiliou G., Evangelista M.

Proc. Natl. Acad. Sci. U.S.A. 112:E4410-E4417(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

The proteomic profile of pancreatic cancer cell lines corresponding to carcinogenesis and metastasis.

Yamada M., Fujii K., Koyama K., Hirohashi S., Kondo T.

J. Proteomics Bioinformatics 2:1-18(2009).

Establishment of a continuous tumor-cell line (PANC-1) from a human carcinoma of the exocrine pancreas.

Lieber M.M., Mazzetta J., Nelson-Rees W.A., Kaplan M., Todaro G.J.

Int. J. Cancer 15:741-747(1975).

Human pancreatic carcinomas and cell lines reveal frequent and multiple alterations in the p53 and Rb-1 tumor-suppressor genes.

Klein-Szanto A.J.P.

Oncogene 7:1503-1511(1992).

Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer.

Lane D.P., Lemoine N.R.

Br. J. Cancer 64:1076-1082(1991).

Inhibition of growth of human or hamster pancreatic cancer cell lines by alpha-difluoromethylornithine alone and combined with cis-diamminedichloroplatinum(II).

Chang B.K., Black O. Jr., Gutman R.

Cancer Res. 44:5100-5104(1984).

Lovastatin inhibits pancreatic cancer growth regardless of RAS mutation.

Thompson J.C.

Pancreas 9:657-661(1994).

K-ras and p53 alterations in genomic DNA and transcripts of human pancreatic adenocarcinoma cell lines.

Imamura M., Hiai H., Fukumoto M.

Jpn. J. Cancer Res. 85:1005-1014(1994).

Comparative analysis of mutations in the p53 and K-ras genes in pancreatic cancer.

Berrozpe G., Schaeffer J., Peinado M.A., Real F.X., Perucho M.

Int. J. Cancer 58:185-191(1994).

Frequent alterations of the tumor suppressor genes p53 and DCC in human pancreatic carcinoma.

Arnold R.

Gastroenterology 106:1645-1651(1994).

Human ductal adenocarcinomas of the pancreas express extracellular matrix proteins.

Kloppel G.

Br. J. Cancer 69:144-151(1994).

HLA-A locus-restricted and tumor-specific CTLs in tumor-infiltrating lymphocytes of patients with non-small cell lung cancer.

Seki N., Hoshino T., Kikuchi M., Hayashi A., Itoh K.

Cell. Immunol. 175:101-110(1997).

Disruption of the antiproliferative TGF-beta signaling pathways in human pancreatic cancer cells.

Reyes G., de Villalonga P., Agell N., Lluis F., Bachs O., Capella G.

Oncogene 17:1969-1978(1998).

Specific chromosomal aberrations and amplification of the AIB1 nuclear receptor coactivator gene in pancreatic carcinomas.

Meltzer P.S., Ried T.

Am. J. Pathol. 154:525-536(1999).

Characterization of the mutations of the K-ras, p53, p16, and SMAD4 genes in 15 human pancreatic cancer cell lines.

Sun C.-L., Yamato T., Furukawa T., Ohnishi Y., Kijima H., Horii A.

Oncol. Rep. 8:89-92(2001).

Loss of the Y chromosome is a frequent chromosomal imbalance in pancreatic cancer and allows differentiation to chronic pancreatitis.

Leder G., Gansauge F., Sorio C., Scarpa A., Gress T.M.

Int. J. Cancer 91:340-344(2001).

Non-random chromosomal rearrangements in pancreatic cancer cell lines identified by spectral karyotyping.

Sheer D., Moore P.S., Scarpa A., Edwards P.A.W., Lemoine N.R.

Int. J. Cancer 91:350-358(2001).

Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4.

Lohr J.-M., Scarpa A.

Virchows Arch. 439:798-802(2001).

A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform.

Sipos B., Moser S., Kalthoff H., Torok V., Lohr J.-M., Kloppel G.

Virchows Arch. 442:444-452(2003).

A recurrent chromosome translocation breakpoint in breast and pancreatic cancer cell lines targets the neuregulin/NRG1 gene.

Edwards P.A.W., Chaffanet M.

Genes Chromosomes Cancer 37:333-345(2003).

Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies.

Kern S.E., Goggins M.G., Hruban R.H.

Cancer Res. 63:8614-8622(2003).

Genome-wide array-based comparative genomic hybridization reveals multiple amplification targets and novel homozygous deletions in pancreatic carcinoma cell lines.

Veltman J.A., van Kessel A.G., Hoglund M.

Cancer Res. 64:3052-3059(2004).

Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity.

Hirohashi S.

Pancreas 29:193-203(2004).

Microarray analyses reveal strong influence of DNA copy number alterations on the transcriptional patterns in pancreatic cancer: implications for the interpretation of genomic amplifications.

Gorunova L., van Kessel A.G., Schoenmakers E.F.P.M., Hoglund M.

Oncogene 24:1794-1801(2005).

Synergistic effects of interferon-alpha in combination with chemoradiation on human pancreatic adenocarcinoma.

Marten A.

World J. Gastroenterol. 11:1521-1528(2005).

Identifying allelic loss and homozygous deletions in pancreatic cancer without matched normals using high-density single-nucleotide polymorphism arrays.

Kern S.E.

Cancer Res. 66:7920-7928(2006).

Activation of Wnt signalling in stroma from pancreatic cancer identified by gene expression profiling.

Schackert H.K., Kloppel G., Kalthoff H., Saeger H.-D., Grutzmann R.

J. Cell. Mol. Med. 12:2823-2835(2008).

Identification of SMURF1 as a possible target for 7q21.3-22.1 amplification detected in a pancreatic cancer cell line by in-house array-based comparative genomic hybridization.

Shiratori K., Hirohashi S., Inazawa J., Imoto I.

Cancer Sci. 99:986-994(2008).

Adoptive immunotherapy for pancreatic cancer: cytotoxic T lymphocytes stimulated by the MUC1-expressing human pancreatic cancer cell line YPK-1.

Yoshino S., Hazama S.

Oncol. Rep. 20:155-163(2008).

Genome-wide analysis of pancreatic cancer using microarray-based techniques.

Harada T., Chelala C., Crnogorac-Jurcevic T., Lemoine N.R.

Pancreatology 9:13-24(2009).

A resource for analysis of microRNA expression and function in pancreatic ductal adenocarcinoma cells.

Mendell J.T.

Cancer Biol. Ther. 8:2013-2024(2009).

Phenotype and genotype of pancreatic cancer cell lines.";

Scaife C.L., Firpo M.A., Mulvihill S.J.

Pancreas 39:425-435(2010).

Development and functional characterization of insulin-releasing human pancreatic beta cell lines produced by electrofusion.

Flatt P.R.

J. Biol. Chem. 286:21982-21992(2011).

Alterations of the p53 tumor-suppressor gene and ki-ras oncogene in human pancreatic cancer-derived cell-lines with different metastatic potential.

Shimazoe T., Nawata H., Kono A.

Oncol. Rep. 1:1223-1227(1994).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Essential gene profiles in breast, pancreatic, and ovarian cancer cells.

Rottapel R., Neel B.G., Moffat J.

Cancer Discov. 2:172-189(2012).

Dynamic DNA methylation across diverse human cell lines and tissues.

Crawford G.E., Absher D.M., Wold B.J., Myers R.M.

Genome Res. 23:555-567(2013).

KRAS mutational subtype and copy number predict in vitro response of human pancreatic cancer cell lines to MEK inhibition.

Linnartz R., Zubel A., Slamon D.J., Finn R.S.

Br. J. Cancer 111:1788-1801(2014).