RKOHomo sapiens (Human)Cancer cell line

🤖 AI SummaryBased on 15 publications

Quick Overview

Human colon cancer cell line with known mutations in PIK3CA and TP53, used in cancer research.

Detailed Summary

The RKO cell line is a human colon cancer cell line derived from a primary colon carcinoma. It is widely used in cancer research due to its well-characterized genetic mutations, including PIK3CA and TP53. These mutations are associated with resistance to certain therapies and are critical in understanding tumor progression. RKO cells are utilized in studies involving cell proliferation, apoptosis, and drug response, particularly in the context of colorectal cancer. The cell line is also noted for its role in investigating the effects of growth factor deprivation and the role of the PI3K/AKT signaling pathway in cancer development.

Research Applications

Cancer ResearchDrug Response StudiesGenetic Mutations AnalysisCell Signaling PathwaysApoptosis and Proliferation Studies

Key Characteristics

PIK3CA MutationsTP53 MutationsResistance to Growth Factor DeprivationPI3K/AKT Pathway ActivationMicrosatellite Instability (MSI)
Generated on 6/15/2025

Basic Information

Database IDCVCL_0504
SpeciesHomo sapiens (Human)
Tissue SourceColon[UBERON:UBERON_0001155]

Donor Information

Age CategoryUnknown
SexUnknown
Subtype FeaturesMSI

Disease Information

DiseaseColon carcinoma
LineageBowel
SubtypeColon Adenocarcinoma
OncoTree CodeCOAD

DepMap Information

Source TypeATCC
Source IDACH-000943_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleACVR2Ap.Lys437Argfs*5 (c.1310delA)Homozygous-PubMed=12615714
MutationSimpleBRAFp.Val600Glu (c.1799T>A)Unspecified-PubMed=26214590
MutationSimplePIK3CAp.His1047Arg (c.3140A>G)Unspecified-PubMed=25926053, PubMed=20570890
MutationSimpleTGFBR2p.Lys128Serfs*35 (c.383delA)Homozygous-PubMed=12615714
MutationSimpleTGFBR2p.Leu452Pro (c.1355T>C)Heterozygous-from parent cell line RKO
MutationNone reportedTP53---PubMed=19787792

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
8,10
D12S391
15,20
D13S317
8,11
D16S539
11,12,13
D18S51
11,12
D19S433
14
D21S11
27,30
D2S1338
16
D3S1358
16,19
D5S818
11,12,13,14
D6S1043
14.1,19
D7S820
8,10
D8S1179
9,13,14
FGA
20,21,22,23
Penta D
10,11
Penta E
11,13
TH01
6,10
TPOX
9,10,11
vWA
15,16,17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

The cancer SENESCopedia: a delineation of cancer cell senescence.";

Leite de Oliveira R., Wessels L.F.A., Bernards R.

Cell Rep. 36:109441.1-109441.22(2021).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

p53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis.

Willson J.K.V., Hamilton S.R., Vogelstein B.

Cancer Res. 50:7717-7722(1990).

Determination of the levels of urokinase and its receptor in human colon carcinoma cell lines.

Boyd D., Florent G., Kim P., Brattain M.G.

Cancer Res. 48:3112-3116(1988).

Heterogeneity of human colon carcinoma.";

Willson J.K.V., Long B.

Cancer Metastasis Rev. 3:177-191(1984).

Initiation and characterization of cultures of human colonic carcinoma with different biological characteristics utilizing feeder layers of confluent fibroblasts.

Kimball P.M., Arcolano L.A., Danbury B.H.

Oncodev. Biol. Med. 2:355-366(1981).

Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability.

Brattain M.G., Willson J.K.V.

Science 268:1336-1338(1995).

Characterization of human Gadd45, a p53-regulated protein.";

Kastan M.B., Fornace A.J. Jr.

J. Biol. Chem. 269:32672-32677(1994).

Increased mutation rate at the hprt locus accompanies microsatellite instability in colon cancer.

Willson J.K.V., Veigl M.L., Sedwick W.D., Markowitz S.D.

Oncogene 10:33-37(1995).

Human papillomavirus 16 E6 expression disrupts the p53-mediated cellular response to DNA damage.

Han S.M., Lorincz A.T., Hedrick L., Cho K.R.

Proc. Natl. Acad. Sci. U.S.A. 90:3988-3992(1993).

Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer.

Sparks A.B., Morin P.J., Vogelstein B., Kinzler K.W.

Cancer Res. 58:1130-1134(1998).

Chromosome number and structure both are markedly stable in RER colorectal cancers and are not destabilized by mutation of p53.

Veigl M.L., Willson J.K.V., Schwartz S., Markowitz S.D.

Oncogene 17:719-725(1998).

Searching for microsatellite mutations in coding regions in lung, breast, ovarian and colorectal cancers.

Minna J.D.

Oncogene 20:1005-1009(2001).

Evidence of selection for clones having genetic inactivation of the activin A type II receptor (ACVR2) gene in gastrointestinal cancers.

Willson J.K.V., Yeo C.J., Hruban R.H., Kern S.E.

Cancer Res. 63:994-999(2003).

Analysis of p53 mutations and their expression in 56 colorectal cancer cell lines.

Liu Y., Bodmer W.F.

Proc. Natl. Acad. Sci. U.S.A. 103:976-981(2006).

Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues.

Garcia-Foncillas J.

Mol. Cancer 5:29.1-29.10(2006).

Colon carcinoma cells harboring PIK3CA mutations display resistance to growth factor deprivation induced apoptosis.

Kan J.L.C., Gibson N.W., Willson J.K.V., Cowell J.K., Brattain M.G.

Mol. Cancer Ther. 6:1143-1150(2007).

Cell growth, global phosphotyrosine elevation, and c-Met phosphorylation through Src family kinases in colorectal cancer cells.

Emaduddin M., Bicknell D.C., Bodmer W.F., Feller S.M.

Proc. Natl. Acad. Sci. U.S.A. 105:2358-2362(2008).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Genomic and biological characterization of exon 4 KRAS mutations in human cancer.

Lash A., Ladanyi M., Saltz L.B., Heguy A., Paty P.B., Solit D.B.

Cancer Res. 70:5901-5911(2010).

5-fluorouracil response in a large panel of colorectal cancer cell lines is associated with mismatch repair deficiency.

Bracht K., Nicholls A.M., Liu Y., Bodmer W.F.

Br. J. Cancer 103:340-346(2010).

Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins.

Geiger T., Wehner A., Schaab C., Cox J., Mann M.

Mol. Cell. Proteomics 11:M111.014050-M111.014050(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Epigenetic and genetic features of 24 colon cancer cell lines.";

Hektoen M., Lind G.E., Lothe R.A.

Oncogenesis 2:e71.1-e71.8(2013).

Detection of viral proteins in human cells lines by xeno-proteomics: elimination of the last valid excuse for not testing every cellular proteome dataset for viral proteins.

Chernobrovkin A.L., Zubarev R.A.

PLoS ONE 9:E91433-E91433(2014).

Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer.

Mariadason J.M., Sieber O.M.

Cancer Res. 74:3238-3247(2014).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Feasibility of label-free phosphoproteomics and application to base-line signaling of colorectal cancer cell lines.

Pham T.V., Ishihama Y., Verheul H.M.W., Jimenez C.R.

J. Proteomics 127:247-258(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets.

Linnebacher M., Cordero F., Di Nicolantonio F., Bardelli A.

Nat. Commun. 6:7002.1-7002.10(2015).

Highly expressed genes in rapidly proliferating tumor cells as new targets for colorectal cancer treatment.

Sanchez A., Schwartz S. Jr., Bilic J., Mariadason J.M., Arango D.

Clin. Cancer Res. 21:3695-3704(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

N-glycosylation profiling of colorectal cancer cell lines reveals association of fucosylation with differentiation and caudal type homebox 1 (CDX1)/villin mRNA expression.

Tollenaar R.A.E.M., Rombouts Y., Wuhrer M.

Mol. Cell. Proteomics 15:124-140(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

APC mutations as a potential biomarker for sensitivity to tankyrase inhibitors in colorectal cancer.

Nagayama S., Fujita N., Sugimoto Y., Seimiya H.

Mol. Cancer Ther. 16:752-762(2017).

A novel RNA sequencing data analysis method for cell line authentication.

Uhlen M., Al-Khalili Szigyarto C.

PLoS ONE 12:E0171435-E0171435(2017).

Multi-omics of 34 colorectal cancer cell lines -- a resource for biomedical studies.

Myklebost O., Skotheim R.I., Sveen A., Lothe R.A.

Mol. Cancer 16:116.1-116.16(2017).

Genomic determinants of protein abundance variation in colorectal cancer cells.

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Choudhary J.S.

Cell Rep. 20:2201-2214(2017).

Pharmacoproteomic characterisation of human colon and rectal cancer.

Weichert W., Knapp S., Feller S.M., Kuster B.

Mol. Syst. Biol. 13:951-951(2017).

Differential effector engagement by oncogenic KRAS.";

McCormick F.

Cell Rep. 22:1889-1902(2018).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).